首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Sevathur pyrochlore occurs mainly in rauhaugite. All analysed pyrochlore grains are rich in UO2. Majority of pyrochlores show alteration to various degrees and maximum alteration is noticed in ones collected from the weathered soil around carbonatite outcrops. There is significant leaching of Ca and Na leading to A-site vacancy and gain in Ba (5 to 7%) and Sr. UO2 content, though show variation is present in all analysed grains. Elements like U and Th can be incorporated in mineral structures showing alpha and beta radiation. This may initiate a process of metamictization. It is reasonable to assume that these pyrochlore grains are metamict.  相似文献   

2.
U-rich pyrochlore (UO2 up to 18.63%) occurs along the magmatic bands as well as disseminated grains within rauhaugites of the Newania complex. UO2 appears to be primary as it seems mostly evenly distributed all over the grains, though in one grain it does show concentration in parts. Ta is also an important element in some pyrochlore grains and its concentration reaches up to 17.15%. High U and Th are responsible for bringing metamictization in the Newania pyrochlore. Newania carbonatite has a complex emplacement history; rauhaugite seems to have been replaced at 2200 Ma years followed by emplacement of ankeritic carbonatite at around 1500 Ma. Later during tectonic event pyrochlore was involved in reaction with hydrothermal fluid and at this stage Fe and FeS were deposited on the rims of pyrochlore grains. At the same time pyrochlore was subjected to hydrothermal alteration resulting in removal of Na, Ca and F leaving large vacancy in its A-site. Very few grains have escaped such alteration.  相似文献   

3.
Pyrochlores, microlites, and U-betafites of pyrochlore group minerals were obtained from mixing experiments of the corresponding oxides and fluorides by hydrothermal synthesis at T = 800 °C and P = 200 MPa in the solution of 1.0 M NaF. The presence of U4+ in pyrochlore does not affect the cell parameter, which for the phases of pyrochlore–microlite series is 10.42 ± 0.01 Å. In a system with an excess of UO2, pyrochlores and microlites, containing uranium up to 0.2–0.3 atoms per formula unit (apfu), are formed. In the uranium-free system of betafites composition, perovskites and Ti-bearing pyrochlores are formed. U-pyrochlores of betafite series, containing 2Ti = Nb + Ta in moles, have cubic cell parameters of 10.26 ± 0.02 Å and U4+ isomorphic capacity of 0.4–0.5 apfu. In the pyrochlore structure, U4+ may substitute for Ca2+ and Na+ cations in the eightfold site. In pyrochlores of pyrochlore–microlite series, Ca2+ is replaced by U4+, while in pyrochlores of betafite series, U4+ replaces Na+. Phases with pyrochlore structure, containing U5+ and U6+ in the sixfold site, usually occupied by Nb5+, Ta5+, and Ti4+, are formed under oxidizing conditions (Cu–Cu2O buffer). They are characterized by low content of Nb5+, Ta5+ (<0.1 apfu), and anomalous behavior of the crystal lattice (compression, instead of expansion). Under natural conditions, the formation of pyrochlores containing a significant amount of U5+ and U6+ is unlikely.  相似文献   

4.
This work reviews the character and origin of primary and supergene economic deposits of niobium associated with carbonatites. The Brazilian supergene deposits account for about 92% of the total worldwide production of Nb, with the primary St. Honoré carbonatite and other sources accounting for only for 7 and 1%, respectively. The emphasis of the review is upon the styles of Nb mineralization and the geological factors which lead to economic concentrations of Nb-bearing minerals. Primary economic deposits of Nb are associated principally with carbonatites found in diverse types of plutonic alkaline rock complexes. Primary magmas are principally those of the melilitite, nephelinite and aillikite clans. Although many primary niobium deposits are associated with carbonatites, ijolites and syenites in the same alkaline complexes can also contain significant Nb mineralization in the form of niobian titanite and diverse Nb–Zr-silicates (marianoite-wöhlerite); these potential sources of Nb have not as yet been explored or exploited. Primary Nb deposits can be regarded as large tonnage, low grade (typically < 1 wt.% Nb2O5) disseminated ore deposits. Niobium is hosted principally by diverse Na–Ca–U-pyrochlores, ferrocolumbite and fersmite. Every actual, and potential, primary Nb deposit is unique with respect to the varieties of pyrochlore present; extent of replacement by other minerals; and degree of alteration by deuteric/hydrothermal fluids. Within a given occurrence individual petrographically-defined units of carbonatite contain distinct suites of pyrochlore. Bulk rock analysis for Nb gives no indication of the style of mineralization and provides no information of use regarding beneficiation of the ore. Evaluation of any Nb deposit requires extensive definition drilling and detailed mineralogical studies. Primary Nb deposits result from the early crystallization of Nb-bearing minerals in magma chambers followed by crystal fractionation, magma mixing, and redistribution of Nb-minerals by density currents. Supergene Nb deposits occur in laterites formed by extensive weathering of primary carbonatites. The process results in the decomposition of apatite and magnetite, removal of soluble carbonates and physical concentration of resistant primary pyrochlore. Intense lateritization results initially in the replacement of primary pyrochlores by supergene, commonly Ba, Sr, K or Pb-bearing pyrochlores, and ultimately complete decomposition of pyrochlore and formation of Nb-bearing rutile, brookite, and anatase. The Nb contents of the laterites can be enriched up to 10 times or more above those of the primary carbonatite. Commonly, pyrochlores in laterites are fine grained and intimately intergrown with hematite, goethite and minerals of the crandallite group. The different styles of mineralization of primary and secondary Nb deposits require different methods of ore beneficiation.  相似文献   

5.
Niobium (Nb) in carbonatite is mainly hosted in fluorcalciopyrochlore and columbite-(Fe). Information related to Nb petrogenesis is useful for understanding the processes related to Nb mineralization and carbonatite evolution. The Saint-Honoré, Quebec, alkaline complex offers a rare opportunity for studying these processes as the complex is not affected by post-emplacement deformation, metamorphism nor weathering. Columbite-(Fe) is shown to be an alteration product of fluorcalciopyrochlore (columbitization). Columbitization is characterized by the leaching of Na and F from the A- and Y-sites of the pyrochlore crystal structure. As alteration increases, Fe and Mn are slowly introduced while Ca is simultaneously leached. Leached Ca and F then crystallize as inclusions of calcite and fluorite within the columbite-(Fe). A-site cations and vacancies in the crystal structure of fresh and altered pyrochlores demonstrate that pyrochlore alteration is hydrothermal in origin. Moreover, halite is a ubiquitous mineral in the Saint-Honoré alkaline complex. Petrographic evidence shows that halite forms in weakly altered pyrochlores, suggesting halite has a secondary origin. As alteration increases, halite is expelled by the hydrothermal fluid and is carried farther into the complex, filling factures throughout the carbonatite. The hydrothermal hypothesis is strengthened by significant enrichments in Cl and HREEs in columbite-(Fe). Chlorine is most likely introduced by a hydrothermal fluid that increases the solubility of REEs.  相似文献   

6.
The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes.From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs.Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.  相似文献   

7.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

8.
Pyrochlore is interpreted as a primary magmatic mineral that appeared in early carbonatite phases at Amba Dongar. Later intrusive phases incorporated this early pyrochlore and caused compositional modification, particularly around the rims, in response to changing magma chemistry. Consequently pyrochlore compositions show wide ranges in Nb, Ta, Ca, Ba, Ti and Ce. The final carbonatite phase was ankeritic and rich in hydrothermal fluids, giving rise to extreme compositional zoning and introduction of diverse elements (Si, U, Sr, Th, Fe), in the contained pyrochlore. Enrichment in radioelements such as U lead to metamictization, alteration and A-site vacancy.  相似文献   

9.
The Dalucao deposit, located in western Sichuan Province, southwestern China, in the western part of the Yangtze Craton, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE belt. Moreover, the Dalucao deposit is the only deposit identified in the southern part of the belt. The Dalucao deposit contains the No. 1, 2, and 3 orebodies; the No. 1 and 3 orebodies are both hosted in two breccia pipes, located in syenite–carbonatite host rocks. Both pipes have elliptical cross-sections at the surface, with long-axis diameters of 200–400 m and short-axis diameters of 180–200 m; the pipes extend downwards for > 450 m. No. 1 and No. 3 have total thickness varying between 55 and 175 m and 14 to 58 m respectively. The REE mineralization is associated with four brecciation events, which are recorded in each of the pipes. The ore grades in the No. 1 and 3 orebodies are similar, and consist of 1.0%–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a Type I mineral assemblage (fluorite + barite + celestite + bastnäsite), whereas the No. 3 orebody is characterized by a Type II assemblage (fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite). Argon (40Ar/39Ar) dating of hydrothermal muscovite intergrown with REE minerals in typical ores from the No. 1 and 3 orebodies yielded similar ages of 12.69 ± 0.13 and 12.23 ± 0.21 Ma, respectively, which suggest that both mineral assemblages formed coevally, rather than in paragenetic stages. Both ages are also similar to the timing of intrusion of the syenite–carbonatite complex (12.13 ± 0.19 Ma). The ore-mineral assemblages occur in breccias, veinlets, and in narrow veins. The ore veinlets, which usually show a transition to mineralized breccia or brecciated ores, are commonly enveloped by narrow veins and stringer zones with comparable mineral assemblages. The brecciated ores form 95% of the volume of the deposit, whereas brecciated ores are only a minor constituent of other deposits in the Mianning–Dechang REE belt. The carbonatite in the syenite–carbonatite complexes contains high concentrations of S (0.07–2.32 wt.%), Sr (16,500–20,700 ppm), Ba (3600–8400 ppm), and light REEs (LREE) (2848–10,768 ppm), but is depleted in high-field-strength elements (HFSE) (Nb, Ta, P, Zr, Hf, and Ti). The syenite is moderately enriched in large-ion lithophile elements (LILE), Sr (155–277 ppm), and Ba (440–755 ppm). The mineralized, altered, and fresh syenites and carbonatites exhibit similar trace element compositions and REE patterns. Brecciation events, and the Dalucao Fault and its secondary faults around the deposit, contributed to the REE mineralization by facilitating the circulation of ore-forming fluids and providing space for REE precipitation. Some hydrothermal veins composed of coarse-grained fluorite and quartz are distributed in the syenite–carbonatite complex. The oxygen isotope compositions of ore-forming fluids in equilibrium with quartz at 215 °C are − 4.95‰ to − 7.45‰, and the hydrogen isotope compositions of fluid inclusions in coarse-grained quartz are − 88.4‰ to − 105.1‰. The syenite–carbonatite complex and carbonatite are main contributors to the mineralization in the geological occurrence. Thus, the main components of the ore-forming fluids were magmatic water, meteoric water, and CO2 derived from the decarbonation of carbonatite. According to the petrographic studies, bastnäsite mineralization developed during later stages of hydrothermal evolution and overprinted the formation of the brecciated fluorite–quartz hydrothermal veins. As low-temperature isotope exchange between carbonates of the carbonatite and water-rich magmatic fluids will lead to positive shifts in δ18O values of the carbonates, C–O isotopic compositions from the bulk primary carbonatite to hydrothermal calcite and bastnäsite changed (δ18OV-SMOW from 8.0‰ to 11.6‰, and δ13C V-PDB from − 6.1 to − 8.7‰). According to the chemical composition of syenite and carbonatite, REE chloride species are the primary complexes for the transport of the REEs in the hydrothermal fluids, and the presence of bastnäsite and parisite means the REE were precipitated as fluorocarbonates. High contents of Sr, Ba and S in the syenite–carbonatite complex led to the deposition of large amount of barite and celestite.  相似文献   

10.
H.v. Maravic  G. Morteani 《Lithos》1980,13(2):159-170
The Lueshe carbonatite is intruded into schists which probably belong to the ßurundian-system. These schists show a weak fenitisation at the contact to the carbonatite complex. Petrographical and chemical investigations show that the different types of syenite of the alkaline complex belong mainly to the miaskitic group. Pyrochlore contents up to 1 vol.% are typical. The carbonatites of the Luesche alkaline complex are mainly sövites with some alvikites and beforsites. Calcite and apatite from the sövites and from the silico-sövites show a wide range of light REE contents. From a Yb/CaYb/La diagram it can be supposed that some of the carbonatites at the contact to the country schists show hydrothermal remobilisation.  相似文献   

11.
The Catalão I alkaline–carbonatite–phoscorite complex contains both fresh rock and residual (weathering-related) niobium mineralization. The fresh rock niobium deposit consists of two plug-shaped orebodies named Mine II and East Area, respectively emplaced in carbonatite and phlogopitite. Together, these orebodies contain 29 Mt at 1.22 wt.% Nb2O5 (measured and indicated). In closer detail, the orebodies consist of dike swarms of pyrochlore-bearing, olivine-free phoscorite-series rocks (nelsonite) that can be either apatite-rich (P2 unit) or magnetite-rich (P3 unit). Dolomite carbonatite (DC) is intimately related with nelsonite. Natropyrochlore and calciopyrochlore are the most abundant niobium phases in the fresh rock deposit. Pyrochlore supergroup chemistry shows a compositional trend from Ca–Na dominant pyrochlores toward Ba-enriched kenopyrochlore in fresh rock and the dominance of Ba-rich kenopyrochlore in the residual deposit. Carbonates associated with Ba-, Sr-enriched pyrochlore show higher δ18OSMOW than expected for carbonates crystallizing from mantle-derived magmas. We interpret both the δ18OSMOW and pyrochlore chemistry variations from the original composition as evidence of interaction with low-temperature fluids which, albeit not responsible for the mineralization, modified its magmatic isotopic features. The origin of the Catalão I niobium deposit is related to carbonatite magmatism but the process that generated such niobium-rich rocks is still undetermined and might be related to crystal accumulation and/or emplacement of a phosphate–iron-oxide magma.  相似文献   

12.
The Early Cretaceous Sung Valley Ultramafic-Alkaline-Carbonatite (SUAC) complex intruded the Proterozoic Shillong Group of rocks and located in the East Khasi Hills and West Jaintia Hills districts of Meghalaya. The SUAC complex is a bowl-shaped depression covering an area of about 26 km2 and is comprised serpentinised peridotite forming the core of the complex with pyroxenite rim. Alkaline rocks are dominantly ijolite and nepheline syenite, occur as ring-shaped bodies as well as dykes. Carbonatites are, the youngest intrusive phase in the complex, where they form oval-shaped bodies, small dykes and veins. During the course of large scale mapping in parts of the Sung Valley complex, eleven carbonatite bodies were delineated. These isolated carbonatite bodies have a general NW-SE and E-W trend and vary from 20–125 m long and 10–40 m wide. Calcite carbonatite is the dominant variety and comprises minor dolomite and apatite and accessory olivine, magnetite, pyrochlore and phlogopite. The REE-bearing minerals identified in the Sung Valley carbonatites are bastnäsite-(Ce), ancylite-(Ce), belovite-(Ce), britholite-(Ce) and pyrochlore that are associated with calcite and apatite. The presence of REE carbonates and phosphates associated with REE-Nb bearing pyrochlore enhances the economic potential of the Sung Valley carbonatites. Trace-element geochemistry also reveals an enrichment of LREEs in the carbonatites and average ΣREE value of 0.102% in 26 bed rock samples. Channel samples shows average ΣREE values of 0.103 wt%. Moreover, few samples from carbonatite bodies has indicated relatively higher values for Sn, Hf, Ta and U. Since the present study focuses surface evaluation of REE, therefore, detailed subsurface exploration will be of immense help to determine the REE and other associated mineralization of the Sung Valley carbonatite prospect.  相似文献   

13.
The variant rock types of an Alkaline-Carbonatite Complex (ACC) comprising alkali pyroxenite, nepheline syenite, phoscorite, carbonatite, syenitic fenite and glimmerite along with REE and Nb-mineralization are found at different centres along WNW-ESE trending South Purulia Shear Zone (SPSZ) in parts of Singhbhum Crustal Province. The ACC occurs as intrusions within the Mesoproterozoic Singhbhum Group of rocks. Alkali pyroxenite comprises of aegirine augite, magnesiotaramite, magnesiokatophorite as major constituents. Pyrochlore and eucolite are ubiquitous in nepheline syenite. Phoscorite contains fluorapatite, dahllite, collophane, magnetite, hematite, goethite, phlogopite, calcite, sphene, monazite, pyrochlore, chlorite and quartz. Coarse fluorapatite shows overgrowth of secondary apatite (dahllite). Secondary apatite is derived from primary fluorapatite by solution and reprecipitation. The primary fluorapatite released REE to crystallize monazite grains girdling around primary apatite. Carbonatite is composed dominantly of Srcalcite along with dolomite, tetraferriphlogopite, phlogopitic biotite, aegirine augite, richterite, fluorapatite, altered magnetite, sphene and monazite. The minerals comprising of the carbonatite indicate middle stage of carbonatite development. Fenite is mineralogically syenite. Glimmerite contains 50–60% tetraferriphlogopite. An alkali trend in the evolution of amphiboles (magnesiotaramite-magnesiokatophorite-richterite) and chinopyroxenes (aegirine augite, aegirine) during the crystallization of the suite of rocks is noted. Monazite is the source of REE in phoscorite and carbonatite. Fluorapatite has low contents of REE, PbO, ThO2 and UO2. Pyrochlore reflects Nb-mineralization in nepheline syenite and it is enriched in Na2O, CaO, TiO2, PbO and UO2. Pyrochlore containing UO2 (6.605%) and PbO (0.914%) in nepheline syenite has been chemically dated at 948 ± 24 Ma by EPMA.  相似文献   

14.
Nodular, cryptocrystalline, weathering-derived magnesite deposits in the New England Orogen, Australia, provide a significant source of high-purity magnesite. Common textural features and related isotopic fingerprints indicate a close genetic relationship between weathering-derived magnesite deposits hosted by ultramafic rocks at Attunga and by sediments at Kunwarara while silica-carbonate rock alteration and rare hydrothermal magnesite vein deposits reflect contrasting conditions of formation. Localised weathering of carbonates in a soil environment shifts stable isotopic composition towards low δ 13C and high δ 18O typical for weathering-derived magnesites while intrusion-related fluids do not significantly change the isotopic composition of affected carbonates. At Attunga, magnesite consists of irregular, nodular veins and masses filling faults and cracks in the weathered serpentinite host rock as well as soft powdery magnesite in pervasive serpentinite alteration zones. The high-grade magnesite at Attunga can be contaminated by amorphous silica and serpentine relicts but does not contain dolomite or ferroan magnesite as observed for its hydrothermal equivalent, the Piedmont magnesite deposit, or other widespread deposits of silica-carbonate rock in the Great Serpentinite Belt. Heavy δ 18O values are compatible with a supergene formation from meteoric waters while low δ 13C suggests C3-photosynthetic plants as the predominant source of carbon for the Attunga magnesites. We infer that weathering-derived, nodular magnesite deposits hosted in ultramafic rocks like the Attunga magnesite deposit have formed in a two-step process involving the hypogene formation of a pre-cursor magnesite deposit and complete supergene overprinting by meteoric waters that acquired carbon from percolation through soil.  相似文献   

15.
以沙坪沟钼矿主要的赋矿岩石——石英正长岩和花岗斑岩为对象,通过对比不同蚀变强度岩石的岩相学、岩石地球化学和同位素特征,研究该矿床的钾质交代作用-矿化特征,探讨不同热液蚀变的元素组合、蚀变过程中的元素迁移和Sr-Nd同位素的变化及其成因、不同蚀变的物理化学条件差异及其与矿化的关系,进而揭示蚀变-成矿热液流体的特征和起源。研究表明,石英正长岩和花岗斑岩的地球化学特征总体相似,显示其属同源岩浆演化产物,二者均受到钾质蚀变,但蚀变强度相差较大。钾质蚀变岩石的化学成分表现为高K_2O、Rb和低Na_2O、CaO、Sr、Ba,不同蚀变强度的岩石Rb/Sr和Sr同位素组成差别较大,花岗斑岩样品数据更显离散,甚至出现异常低的锶同位素初始值,表明热液蚀变强烈改造了Rb-Sr同位素体系,而Sm-Nd体系基本保持稳定。这一现象在东秦岭-大别钼矿带中典型的斑岩钼矿床也有出现,显示该成矿带具有相似的蚀变类型、热液起源和演化特征。而且钾长石化后期至黄铁云(绢)英岩化阶段也是最主要的钼成矿期,表明这期间流体系统pH值的降低致使Mo元素从流体中沉淀成矿。对比斑岩铜、铜-钼矿床和钼矿床的蚀变特征及其过程中元素和同位素的变化可以发现,这3种矿床均发育碱质交代作用,但蚀变强度、热液的Rb-Sr分异程度及其对原岩的改造程度存在较大差异,这暗示了各自特有的成岩、成矿物质和流体来源及大地构造背景。  相似文献   

16.
In the design of hydrothermal solubility studies it is important that the system be completely defined chemically. If the solubilities of minerals containing m metallic elements are to be determined in hydrothermal NaCl solutions, the phase rule requires that a total of m + 6 independent intensive parameters be controlled or measured in order to determine completely the system.In this study the solubility of the univariant assemblage pyrite + pyrrhotite + magnetite has been determined in vapor saturated hydrothermal solutions from 200 to 350°C for NaCl concentrations ranging from 0.0 to 5.0 molal. At any temperature, oxygen and sulfur fugacities were buffered by the chosen assemblage. System pH was determined from excess CO2 partial pressures and computed ionic equilibria. Equilibrium constants were calculated by regression analysis of solubility data. The results show that more than 10 ppm of each mineral can dissolve in typical hydrothermal solutions under geologically realistic conditions. Solubilities were best represented by the species Fe2+ and FeCl+ at 200 and 250°C; Fe2+, FeCl+ and FeCl20 at 300°C; and Fe2+ and FeCl20 at 350°C. Ore deposition would occur by lowering temperature, diluting chloride concentration, or by raising pH through wall rock alteration reactions.  相似文献   

17.
One of the main effects of supergene alteration of ore-bearing hydrothermal dolomite in areas surrounding secondary zinc orebodies (Calamine-type nonsulfides) in southwestern Sardinia (Italy) is the formation of a broad halo of Zn dolomite. The characteristics of supergene Zn dolomite have been investigated using scanning electron microscopy and qualitative energy-dispersive X-ray spectroscopy, thermodifferential analysis, and stable isotope geochemistry. The supergene Zn dolomite is characterized by variable amounts of Zn, and low contents of Pb and Cd in the crystal lattice. It is generally depleted in Fe and Mn relative to precursor hydrothermal dolomite (Dolomia Geodica), which occurs in two phases (stoichiometric dolomite followed by Fe-Mn-Zn-rich dolomite), well distinct in geochemistry. Mg-rich smithsonite is commonly associated to Zn dolomite. Characterization of Zn-bearing dolomite using differential thermal analysis shows a drop in temperature of the first endothermic reaction of dolomite decomposition with increasing Zn contents in dolomite. The supergene Zn dolomites have higher δ18O but lower δ13C values than hydrothermal dolomite. In comparison with smithsonite-hydrozincite, the supergene Zn dolomites have higher δ18O, but comparable δ13C values. Formation of Zn dolomite from meteoric waters is indicated by low δ13C values, suggesting the influence of soil-gas CO2 in near-surface environments. The replacement of the dolomite host by supergene Zn dolomite is interpreted as part of a multistep process, starting with a progressive “zincitization” of the dolomite crystals, followed by a patchy dedolomitization s.s. and potentially concluded by the complete replacement of dolomite by smithsonite.  相似文献   

18.
The Khaluta carbonatite complex comprizes fenites, alkaline syenites and shonkinites, and calcite and dolomite carbonatites. Textural and compositional criteria, melt inclusions, geochemical and isotopic data, and comparisons with relevant experimental systems show that the complex formed by liquid immiscibility of a carbonate-saturated parental silicate melt. Mineral and stable isotope geothermometers and melt inclusion measurements for the silicate rocks and carbonatite all give temperatures of crystallization of 915–1,000°C and 890–470°C, respectively. Melt inclusions containing sulphate minerals, and sulphate-rich minerals, most notably apatite and monazite, occur in all of the lithologies in the Khaluta complex. All lithologies, from fenites through shonkinites and syenites to calcite and dolomite carbonatites, and to hydrothermal mineralisation are further characterized by high Ba and Sr activity, as well as that of SO3 with formation of the sulphate minerals baryte, celestine and baryte-celestine. Thus, the characteristic features of the Khaluta parental melt were elevated concentrations of SO3, Ba and Sr. In addition to the presence of SO3, calculated fO2 for magnetites indicate a high oxygen fugacity and that Fe+3>Fe+2 in the Khaluta parental melt. Our findings suggest that the mantle source for Khaluta carbonatite and associated rocks, as well as for other carbonatites of the West Transbaikalia carbonatite province, were SO3-rich and characterized by high oxygen fugacity.  相似文献   

19.
As well as world class Fe and REE resources the Bayan Obo mineral deposits also hosts significant niobium resources(estimated as 2.2 Mt Nb with an average grade of 0.13 wt% Nb).Niobium in this study is primarily hosted in aeschynite-(Ce) and(Nd),but with subsidiary amounts of pyrochlore,fergusonite-(Ce),fersmite and columbite.Here we report on the paragenetic and textural setting of aeschynite,pyrochlore and fergusonite in the main ore bodies and in a carbonatite dyke.Niobium in a carbonatite sample is hosted in a phase tentatively(due to significant Ca,Mn and Ti contents) identified as fergusonite-(Ce).Aeschynite occurs overgrowing foliation in banded ores,in fractures and vugs in aegirine-rich rocks and in calcite veins.The composition in all settings is similar,but some examples in banded ores develop significant zonation in Y,Th and the REE,inferred to relate to buffering of halogen acid species to low levels by dissolution and fluoritisation of calcite,and the preferential precipitation of LREE from solution due to lower mineral solubility products compared to the HREE.Although lower in total concentration the ratios of REE in pyrochlore are similar to those of aeschynite and suggest the same metal source.The crystallisation of pyrochlore probably relates to growth in paragenetic settings where carbonates had already been eliminated and hence the buffering of F-species activities in the hydrothermal fluid was reduced.Both aeschynite and pyrochlore show evidence of alteration.Primary alteration of aeschynite resulted in leaching of A-site cations(Ca,REE,Th) and Nb,addition of Fe,and ultimately replacement by Ba-Ti phases(baotite and bafertisite).Secondary,metamictisation enhanced,possibly supergene alteration of pyrochlore resulted in hydration,leaching of A-site cations leading to the development of lattice vacancies and increases in Si.The presence of hydrothermal Nb resources at Bayan Obo suggests there may be potential for further Nb discoveries in the area,whilst the trends in element mobility during alteration have significant implications for the utility of A-B oxides as components of materials for immobilisation of radionuclides.  相似文献   

20.
This paper presents and discusses the isotopic data from the hydrothermal studies of the Poços de Caldas Natural Analogue Project. The purpose of these studies was to elucidate the mass transport of relevant elements and isotopes associated with hydrothermal mineralization and alteration at the Osamu Utsumi uranium mine, as applicable to high-temperature radwaste isolation (particularly in the U.S. nuclear waste program). Research efforts were focused on studying the thermal, chemical and hydrologic nature of the palaeohydrothermal regime associated with a breccia pipe at the Osamu Utsumi mine, and related to the geochemical, geochronological and petrological characterization studies of unaltered regional nepheline syenite and phonolite.The regional rocks studies have a vertically elongated δD, δ18O pattern, which possibly indicates meteoric water/rock interaction. Regression of Rb---Sr whole-rock isotopic data for the regional nepheline syenite and phonolite samples did not produce isochrons. An internal, mineral-separate isochron regression from a nepheline syenite sample, considered representative of unaltered nepheline syenite of the Poços de Caldas plateau, yields an age of 78 Ma, and an initial ratio of approximately 0.7051. The initial ratios of the regional nepheline syenites are possibly indicative of a mantle source for the alkaline magmatism, with some incorporation of old, high Rb/Sr crustal material. The greater-than-mantle values of δ18O, if not due solely to surficial processes, also appear to require some assimilation of crustal material. Sm---Nd isotopic data for the regional rocks do not define any isochrons, although the nepheline syenite samples conform very well to a calculated reference isochron for 78 Ma and a fixed initial 143Nd/144Nd of 0.512359. The regional phonolite samples lie markedly off this isochron. This is probably due to the phonolite samples having different initial 143Nd/144Nd values. All regional samples lie within the “Mantle Array” trend. Their location within NdSr space indicates as asthenospheric Mid Ocean Ridge Basalt (MORB)-type source magma also contaminated by continental igneous and metamorphic rocks (e.g. the Precambrian gneiss surrounding the Poços de Caldas plateau).The rocks studied at the Osamu Utsumi mine from the F4 drillcore have experienced varying degrees of hydrothermal mineralization and metasomatism, and deep weathering. The hydrothermally altered rocks have a quite pronounced δD shift, with only a slight δ18O shift. The δD-δ18O trend of the hydrothermally altered F4 samples most likely reflects the variability of temperature, hydrologic flow, mineralogical alteration and, therefore, water/rock interaction and isotopic exchange in the palaeohydrothermal regime.Regression of Rb---Sr whole-rock isotopic data for subsamples from a nepheline syenite xenolith sample yields an age of 76 Ma and an initial ratio of approximately 0.7053. Due to the marked hydrothermal alteration and metasomatism of this sample, the Rb---Sr isotopic system is interpreted as being re-equilibrated and thus the regressed age is the age of the hydrothermal event. Using a versus 1/Sr mixing diagram, distinct trends are seen for hydrothermal alteration, mineralization and weathering. Again, the F4 nepheline syenite samples do not define an Sm---Nd isochron, but conform very well to a calculated model isochron for 78 Ma and an initial 143Nd/144Nd of 0.512365. The Sm---Nd isotopic data also exhibit a possible disturbance by the hydrothermal, metasomatic alteration. A lamproite dyke which crosscuts the hydrothermal alteration in the Osamu Utsumi mine gives an age of 76 Ma, which is essentially the same as the Rb---Sr age of the hydrothermally altered nepheline syenite subsamples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号