首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
末次盛冰期以来长江三角洲地区的沉积相和古地理   总被引:16,自引:6,他引:10       下载免费PDF全文
末次盛冰期低海平面期间,长江三角洲地区可划分为2个古地理单元:古河谷和古河间地。下切河谷底部侵蚀面和古河间地顶面构成了冰后期海侵沉积旋回的底界面,它相当于层序地层学中的层序界面。位于河口湾-浅海相中的最大海侵面将冰后期海侵沉积旋回分为其下的海侵层序和其上的海退层序。随着δ18O 3期的海平面下降,长江开始下切,至δ18O 2期低海面时形成巨大的下切河谷。冰后期海平面上升引发的海侵造成了长江古河谷系的充填和河床、河漫滩-河口湾和部分河口湾-浅海相的形成,尔后的进积产生了部分河口湾-浅海相及三角洲相等。溯源堆积是产生下部河流沉积单元的主要过程,其中河漫滩沉积中出现的潮汐层理和少量小个体有孔虫说明了海洋因素的影响,河口湾-浅海相泥质沉积主要形成于最大海侵之时,三角洲的进积则产生了具有多期河口坝的三角洲。古河间地表面的硬粘土层经历了沉积和成壤作用交替、持续成壤作用和早期成岩作用,它们大致分别对应于δ18O 3期、δ18O 2期和δ18O 1期,硬粘土层中留下了这3种作用的烙印。长江三角洲古河间地的古土壤母质属河漫滩相。持续成壤阶段河流基面和地下水位均较低,年降雨量约为500~800 mm,相当于现今的温带地区,干湿周期变化明显,地下水升降频繁。所有这些表明,当时并非干旱气候。  相似文献   

2.
江苏南通地区晚第四纪下切河谷沉积与环境演变   总被引:1,自引:0,他引:1  
采用层序地层学基本原理,以海平面升降旋回为主线,根据钻井岩芯、古生物、测年和分析化验等资料,探讨了江苏南通地区晚第四纪地层层序、层序界面、沉积特征及沉积环境的演变。结果表明,研究区晚第四纪发育三期下切河谷,形成了三套沉积层序,自下而上三个层序的地质时代分别相当于晚第四纪早期、晚第四纪中期和晚第四纪晚期。由于后期河流的强烈下切破坏,早期沉积层序往往被剥蚀殆尽,仅残留下部的河床相粗粒沉积,造成不同期河床相的叠置;相对而言,晚第四纪晚期形成的下切河谷沉积层序以不同的沉积相组合被保存下来,自下而上划分为河床、河漫滩、河口湾、浅海和三角洲5种沉积相类型,表现为一个较完整的沉积层序。晚第四纪晚期下切河谷底界面,是末次冰期海面下降,河流下切形成的侵蚀面,与河间地古土壤层顶面的沉积间断面同属一个地史期的产物,一起构成区域不整合面,界面上下岩性突变,其上的冰后期地层属同一个海平面变化旋回,可互相对比,因而具有年代地层学意义。三期下切河谷层序的套叠结构表明,晚第四纪以来,研究区存在三次"低海面-海侵-高海面-海退"周期性海面变化。  相似文献   

3.
The passive margin Texas Gulf of Mexico Coastal Plain consists of coalescing late Pleistocene to Holocene alluvial–deltaic plains constructed by a series of medium to large fluvial systems. Alluvial–deltaic plains consist of the Pleistocene Beaumont Formation, and post-Beaumont coastal plain incised valleys. A variety of mapping, outcrop, core, and geochronological data from the extrabasinal Colorado River and the basin-fringe Trinity River show that Beaumont and post-Beaumont strata consist of a series of coastal plain incised valley fills that represent 100 kyr climatic and glacio-eustatic cycles.

Valley fills contain a complex alluvial architecture. Falling stage to lowstand systems tracts consist of multiple laterally amalgamated sandy channelbelts that reflect deposition within a valley that was incised below highstand alluvial plains, and extended across a subaerially-exposed shelf. The lower boundary to falling stage and lowstand units comprises a composite valley fill unconformity that is time-transgressive in both cross- and down-valley directions. Coastal plain incised valleys began to fill with transgression and highstand, and landward translation of the shoreline: paleosols that define the top of falling stage and lowstand channelbelts were progressively onlapped and buried by heterolithic sandy channelbelt, sandy and silty crevasse channel and splay, and muddy floodbasin strata. Transgressive to highstand facies-scale architecture reflects changes through time in dominant styles of avulsion, and follows a predictable succession through different stages of valley filling. Complete valley filling promoted avulsion and the large-scale relocation of valley axes before the next sea-level fall, such that successive 100 kyr valley fills show a distributary pattern.

Basic elements within coastal plain valleys can be correlated with the record offshore, where cross-shelf valleys have been described from seismic data. Falling stage to lowstand channelbelts within coastal plain valleys were feeder systems for shelf-phase and shelf-margin deltas, respectively, and demonstrate that falling stage fluvial deposits are important valley fill components. Signatures of both upstream climate change vs. downstream sea-level controls are therefore interpreted to be present within incised valley fills. Signatures of climate change consist of the downstream continuity of major stratigraphic units and component facies, which extends from the mixed bedrock–alluvial valley of the eroding continental interior to the distal reaches, wherever that may be at the time. This continuity suggests the development of stratigraphic units and facies is strongly coupled to upstream controls on sediment supply and climate conditions within hinterland source regions. Signatures of sea-level change are critical as well: sea-level fall below the elevation of highstand depositional shoreline breaks results in channel incision and extension across the newly emergent shelf, which in turn results in partitioning of the 100 kyr coastal plain valleys. Moreover, deposits and key surfaces can be traced from continental interiors to the coastal plain, but there are downstream changes in geometric relations that correspond to the transition between the mixed bedrock–alluvial valley and the coastal plain incised valley. Channel incision and extension during sea-level fall and lowstand, with channel shortening and delta backstepping during transgression, controls the architecture of coastal plain and cross-shelf incised valley fills.  相似文献   


4.
长江水下三角洲层序地层学研究有助于全面了解长江三角洲地层特征和沉积环境演化模式。通过对长江水下三角洲下切河谷区YD0901和YD0903孔岩心的详细沉积物粒度、特征元素比值(Cl/Ti和Zr/Rb)、沉积相对比分析,恢复了冰后期以来长江水下三角洲层序地层格架。研究区冰后期以来自下而上依次出现河流相、潮汐河流相、河口湾相、浅海相和三角洲相的沉积相序。末次冰期海平面下降,古长江形成下切河谷,古河间地发育硬黏土层,构成五级Ⅰ型层序界面。之后海平面回升,分别于15 cal ka BP和8.0 cal ka BP形成最大海退和最大海侵界面,水下三角洲区域最大海侵发生时间略滞后于平原区,约为7.5 cal ka BP。据此3个层序界面将冰后期地层划分为低位体系域、海侵体系域和高位体系域。钻孔岩心记录揭示了14.8 cal ka BP海侵到达研究区;14.8~13 cal ka BP期间,受MWP-1A冰融水事件影响海平面快速上升,海岸线向陆推进速率可达71.9,km/ka;海退期间各钻孔沉积速率较低,直至2 cal ka BP开始,沉积速率明显增加。  相似文献   

5.
Quaternary incised valley systems are usually characterized by the preservation of a single valley-fill attributed to the last post-glacial period. Moreover, there are very few cases of correlation between incised valley system developed on inner shelf and sedimentary units observed on the mid to outer shelf, mainly forced regressive wedges. The Roussillon shelf, in the western part of the Gulf of Lion, is a particular example of preserved Quaternary compound incised valley system also characterized by a direct correlation with the forced regressive lowstand wedges on the mid-outer shelf. High-resolution seismic data and a borehole, 60 m deep, located on the beach barrier permit an accurate study of the geometry and lithology of the system. Six imbricated and more or less preserved incised valleys and valley-fills are observed up to the inner to mid-shelf. The key surfaces associated to the incised valleys are correlated to the boundaries of the forced regressive wedges. They are assumed to be reworked surfaces. At the borehole location, only few thin layers, less than 1 m thick, of coarse grain and/or floating pebbles, are observed and should correspond to preserved fluvial lowstand deposits reworked under marine influence. The valley fills are mainly composed of estuarine muddy silts. From AMS 14C age dating it is inferred that the uppermost incised valley system is younger than 45 ky cal BP. Based on those observations, the six preserved incised valley systems are assumed to be controlled by the last six 4th order sea-level cycles — 100 ky — of the middle to late Quaternary. The paleo-topography of the underlying Plio-Quaternary deposits controls the compound incised valley system location. The deep topography of the Messinian Erosionnal Surface is a controlling factor at a lower degree. The partial preservation of the successive valley fill is attributed not only to the differential subsidence but also to the lateral migration of each incision and to the hydrodynamic regime.  相似文献   

6.
The Lower Tagus Valley in Portugal contains a well-developed valley-fill succession covering the complete Late Pleistocene and Holocene periods. As large-scale stratigraphic and chronologic frameworks of the Lower Tagus Valley are not yet available, this paper describes facies, facies distribution, and sedimentary architecture of the late Quaternary valley fill. Twenty four radiocarbon ages provide a detailed chronological framework. Local factors affected the nature and architecture of the incised valley-fill succession. The valley is confined by pre-Holocene deposits and is connected with a narrow continental shelf. This configuration facilitated deep incision, which prevented large-scale marine flooding and erosion. Consequently a thick lowstand systems tract has been preserved. The unusually thick lowstand systems tract was probably formed in a previously (30,000–20,000 cal BP) incised narrow valley, when relative sea-level fall was maximal. The lowstand deposits were preserved due to subsequent rapid early Holocene relative sea-level rise and transgression, when tidal and marine environments migrated inland (transgressive systems tract). A constant sea level in the middle to late Holocene, and continuous fluvial sediment supply, caused rapid bayhead delta progradation (highstand systems tract). This study shows that the late Quaternary evolution of the Lower Tagus Valley is determined by a narrow continental shelf and deep glacial incision, rapid post-glacial relative sea-level rise, a wave-protected setting, and large fluvial sediment supply.  相似文献   

7.
Studies of a deep high-resolution reflection seismic profile through the eastern North Sea basin show that at least four erosional phases have affected the area during the Saalian, Weichselian and Holocene. Foraminiferal investigations of five boreholes make it possible to date the erosional events. When looking at the restricted area of this study, the deep incised valleys appear to have developed during sea-level fall and lowstand as the Quaternary ice sheets were established. Further erosion took place during the deglaciation of the area and the valleys were further deepened when used as drainage paths. The oldest erosional phase recognized from the seismic profiles is interpreted to be of Saalian age. Two later erosive phases were associated with intra-Weichselian glacial advances. The uppermost erosive surface represents river valleys at the transition from the Weichselian glacial to the Holocene.  相似文献   

8.
下切谷是陆地上一种常见的侵蚀地貌,古今均十分发育,但是不同盆地、不同时代发育的下切谷,无论是在沉积充填特征还是平面展布形态等多个方面都大相径庭。为此,作者依据曼宁公式进行理论推导,再结合分析北海盆地维京地堑发育的典型下切谷实例以及前人进行的相关水槽实验结果总结认为: 地形坡度、基准面下降速率及幅度与下切谷所侵蚀地层的岩性是影响下切谷发育模式的最主要因素。这些因素共同控制了: (1)下切谷的弯度指数及宽深比,(2)下切谷平面上发育密度及其规模,(3)与下切谷伴生的陆棚三角洲、陆棚边缘三角洲沉积厚度及展布范围。海侵过程中下切谷的沉积充填类型及岩性,受平均基准面上升速率及沉积物供应量的共同控制,根据沉积充填类型及岩性的不同可将其划分为富砂型陆棚三角洲充填及富泥型河口湾充填两类。  相似文献   

9.
During fossilization, bone is thought to recrystallize and alter chemically on timescales of kyr to a few tens of kyr, i.e., similar to the timescale for formation of soils. Therefore, C- and O-isotope compositions of bone apatite should correlate with trends in soil water composition and aridity, and serve as paleoclimate indicators. This hypothesis was tested by analyzing C- and O-isotope compositions of the CO3 component of fossil bone apatite from mid-Oligocene through late Pleistocene units in Oregon and western Idaho, including the John Day (19.4-30.0 Ma), Mascall (15.2-15.8 Ma), and Rattlesnake (7.2-7.8 Ma) Formations, whose paleosol sequences have been studied in detail, and the Juntura (10-11 Ma), Hagerman (3.2 Ma), and Fossil Lake (<23-650 ka) fossil localities. Tooth enamel δ18O values provide a baseline of meteoric water compositions. Stable isotope compositions of bone CO3 do change in response to broad climatic trends, but show poor correlation with compositions of corresponding paleosol CO3 at specific horizons. Instead, compositional deviations between bone and paleosol CO3 correlate with compositional deviations with the next higher paleosol; this suggests that the timescale for fossilization exceeds one paleosol cycle. Based on stratigraphic evidence and simple alteration models, fossilization timescales are estimated at 20-50 kyr, indicating that bone CO3 will prove most useful for sequences spanning >100 kyr. C-isotopes show negative and strong positive deviations during wet and dry climates respectively, and short-term trends correspond well with changes in aridity within the Mascall and Rattlesnake Formations, as inferred from paleosols. A proposed correction to δ18O values based on δ13C anomalies implies a small, ∼1.5‰ increase in meteoric water δ18O during the late Oligocene global warming event, consistent with a minimum temperature increase of ∼4 °C. A strong inferred decrease in δ18O of 4-5‰ after 7 Ma closely parallels compositional changes in tooth enamel, and reflects a doubling in the height of the Cascade Range.  相似文献   

10.
江苏东南部启东地区开展的1∶5万区域地质调查工作已经完成野外工作验收,通过整理分析新获取的地质资料,发现工作区内"下切河谷"地区地表下46~59 m处普遍存在棕黄色、灰绿色、灰黑色"硬黏土层",厚度2~10 m不等;局部地区钻孔岩心剖面在本层顶部表现为明显的古土壤层,见根痕构造、钙质结核等暴露成土特征,其下部可见灰黑色富有机质、植物碎屑的粉砂质黏土层。古土壤层的发现证明了本区在末次盛冰期并不完全为下切河谷地区,更新了前人对测区晚更新世末期沉积地层的认识;而厚度0.5~2 m不等的富有机质、植物碎屑的粉砂质黏土层为本区浅层天然气提供了气源。  相似文献   

11.
杭州湾地区15000a以来层序地层学初步研究   总被引:19,自引:1,他引:19  
林春明 《地质论评》1997,43(3):273-280
本文从杭州湾地区末次冰期以来的地质背景入手,分析了该区晚第四纪地层层序、深切河谷形成和演化等。末次冰期低海平面时河流侵蚀切割老地层,在本区形成40-110m深的河谷,谷底为区域不整合面,自海向陆方向和平行海岸线方向均为一不等时面,是I类层序边界。冰后期地层为一个完整的I类层序,但存在多个小的间断面。初始海泛面也是穿时的,在深切谷地带是滞流沉积物与溯源堆积物之间的界面,在河间地则为古土壤层的顶界面;  相似文献   

12.
Global, glacio-eustatic sea-level changes massively influenced the depositional history of the Central Paratethyan region. Here, we correlate Middle Miocene global δ18O-shifts with ice volume changes on Antarctica and sea-level changes with corresponding phases of erosion (valley incision) and deposition in the Lower Austrian part of the Alpine–Carpathian Foredeep. This allows the exact dating of the valley formation. Two periods of positive δ18O-shifts resulted in sea-level drops of about 60 and 40 m, respectively. The first drop in the late Langhian (middle Badenian) at c. 13.9 Ma (Mi3b) was fast and caused severe erosion on the emerged foredeep. In a second, less pronounced step around 13.0 Ma (Mi4) in the middle Serravallian (late Badenian), the base level was further deepened after a period of alternating erosion and deposition. The combined sea-level change (80–120 m) fits well with the maximum thickness of Sarmatian sediments drilled within incised valley (110 m). The global sea-level falls affected not only the geological history of the foredeep. The intensive erosion (valley incision) is combined with delta progradation in the adjacent Vienna Basin. Due to this massive sea-level drop, the interruption of marine connections resulted in vast salt deposits and faunal crises within the Central Paratethys during this time.  相似文献   

13.
Overfilled incised valleys develop when the rate of sediment supply outpaces the rate of accommodation. An overfilled incised valley presents simple or compound valley-fill architecture, depending on the depth of the valley incision, compared with the height reached by the following sea-level rise.The Ventimiglia incised valley, exposed on the Ligurian coast, north-western Mediterranean margin, presents a spectacular example of compound incised-valley fill, developed in perennial “overfill” conditions. The valley was subaerially incised during the Messinian Salinity Crisis and rapidly flooded by the sea at the beginning of Pliocene, then filled by eleven coarse-grained Gilbert-type deltas during Early–Middle Pliocene time.The basal Messinian unconformity is locally paved with subaerial scree breccias and bioclastic shallow-marine sandstones, and blanketed by bathyal marls. These deposits record the lowstand, transgressive and early-highstand systems tracts of the first valley-fill sequence. The subsequent progradation of Gilbert-type deltas occurred in four stages, or depositional sequences, separated by transgressive marine-marl intervals. Within each depositional sequence, the deltaic bodies display offlapping architecture, recording falling shoreline trajectory, downward shifts in facies, and overall forced regression. The water depth and accommodation in the inundated coastal valley was gradually decreasing with time. The reduced accommodation allowed the youngest deltas to prograde out to the shelf edge, triggering mass collapses and subsequent filling into the newly created slump scars. Some of the deltas probably acted as “canyon-perched deltas” and supplied sediment to the deep-water slope and floor of the Ligurian Basin.The vertical stacking of Gilbert-type deltas is usually attributed, in tectonically active basins, to fault-related subsidence pulses. In Ventimiglia, the accommodation was created by high-frequency eustatic sea-level rises that, probably accompanied by climate controlled reductions in sediment supply, temporarily outpaced uplift, leading to the development of multiple cycles of infill.  相似文献   

14.
Detailed sedimentological facies analysis of the fluvio-deltaic Millstone Grit succession (Upper Carboniferous) of South Wales reveals that a number of cyclothems bounded by marine flooding surfaces (marine bands) in these strata exhibit facies architectures that represent erosion, non-deposition and/or deposition during periods of falling relative sea-level. A major fluvial complex below the Subcrenatum Marine Band, the Farewell Rock, lies within an incised valley, with a regional unconformity (sequence boundary) at its base. This unconformity is marked by deep erosional relief, an identifiable time gap and an angular discordance in bedding. The Cumbriense Quartzite, a correlative unit containing several mature palaeosols, records a depositional hiatus on a terrace-like interfluve that lay beyond the margins of the coeval Farewell Rock valley. Cyclothems in the underlying Middle Shales contain additional surfaces and units of subtler character. Beneath the Cancellatum Marine Band, a thin (15 cm), calcareous siltstone bed (the ‘Amroth Granule Bed’) that directly overlies prodelta shales contains reworked bioclasts, bored phosphorite clasts and quartz granules. Quartz granules in this bed are interpreted to represent relict lowstand, fluviatile? deposits, which were reworked during later transgression. Three further cyclothems contain sharp-based, storm-reworked mouth bars that record an abrupt lowering of wave base, most probably during periods of falling relative sea-level. One of these cyclothems also contains a distributary channel complex, which records an abrupt influx of coarse-grained sediment of ambiguous origin. The significance of these subtle surfaces and units for intracyclothem stratigraphy has rarely been considered; their prevalence in the Middle Shales provides evidence for numerous, high-frequency relative sea-level falls, which were previously unrecognized. These relative sea-level falls appear to alternate coherently with the widespread sea-level rises recorded by the marine bands, suggesting that glacio-eustasy is their most likely driving mechanism. The notion of glacio-eustatic sea-level falls is supported by the correlation of the basal Farewell Rock sequence boundary with sequence boundaries documented in adjacent basins. The angular unconformity and a change in sediment provenance at the base of the Farewell Rock, however, suggest an additional tectonic control on stratigraphic architecture here, namely a short-lived phase of rifting or inversion prior to widespread fluvial incision. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
陈代钊 《地质科学》1997,32(4):432-444
贵州西部龙潭组主要含有6种沉积相组合:即浅海沉积、细粒滨岸平原沉积、溢岸沉积、小型河道砂体、叠置河道砂体和煤层。多层叠置砂体一般10-25m厚,2-10km宽,常含海绿石,切入下伏的三角洲平原、滨岸平原和浅海沉积中,被认为是下切谷充填。在龙潭组中共识别出广泛发育的10个层序界面,由此所限定的层序大致相当于4级旋回层序。在这些层序中,准层序或准层序组识别不出,然能识别体系域,层序几乎全由海进体系域(TST)和高位体系域(HST)组成,低位体系域(LST)发育不好。在垂向上,它们又可叠置成3级复合层序,并由低位、海进和高位层序组组成。在低位层序组中,河道下切常冲刷掉下伏层序的全部HST和部分TST,致使其与下伏层序的下切谷充填重合。在海进层序组中,下切作用最弱,具最小砂/泥比值,下切谷充填侧向孤立。高位层序组是低位和海进层序的过渡类型,下切谷充填也趋于孤立。  相似文献   

16.
The δ13C and δ18O values of well-preserved carbonate rhizoliths (CRs) provide detailed insights into changes in the abundance of C3 and C4 plants in response to approximately decadal-scale changes in growing-season climate. We performed stable isotope analyses on 35-40 CRs sampled at 1-cm intervals from an 18-cm-thick paleosol formed in southern Illinois during Wisconsin interstadial 2. Minimum δ13C values show little variation with depth, whereas maximum values vary dramatically, and average values show noticeable variability; maximum δ18O values vary less than the minimum δ18O values. These findings indicate that a diverse and stable C3 flora with a limited number of C4 grass species prevailed during this interval, and suggest that the maximum growing-season temperatures were relatively stable, but minimum growing-season temperatures varied considerably. Two general patterns characterize the relationships between the δ13C and δ18O values obtained from the 1-cm samples. In some cases, low δ13C values correspond to low δ18O values and high δ13C values correspond to high δ18O values, suggesting that cooler growing-season temperatures favored C3 and warmer growing-season temperatures favored C4 plants. In other cases, low δ13C values correspond to high δ18O values, likely suggesting that wetter growing-season conditions were favorable to C3 plants. The high density of well-preserved CRs in this paleosol provides a unique opportunity to study detailed ecological responses to high-resolution variability in growing-season climate.  相似文献   

17.
Recent very high-resolution seismic profiles ground-truthed by vibrocores allow us to evidence an atypical incised valley fill in a drowned valley segment, the ‘Pertuis Breton’ (Bay of Biscay, France). The sedimentary valley-fill architecture mainly includes five superimposed progradational wedges composed by marine sands. Sandbodies show a landward migration of their depocentres upward and are topped by almost flat unconformities extended by submarine terraces. This sedimentary infill pattern is similar to backstepping wedges, described on continental shelfs. It suggests that this valley fill records sea-level rise during the last transgression. To cite this article: N. Weber et al., C. R. Geoscience 336 (2004).  相似文献   

18.
长江三角洲古土壤发育与晚更新世末海平面变化的耦合关系   总被引:21,自引:15,他引:6  
文章运用沉积学、元素地球化学和稳定碳同位素等方法,研究长江三角洲古土壤记录的古环境和古气候特征。古土壤与下伏漫滩沉积在粒度组成和化学风化程度等方面有继承性和延续性。不同剖面母质粒度组成受局部地形起伏控制,具有泛滥平原沉积特征。结合沉积学特征及古生物研究分析表明,古土壤成土母质应为洪泛平原沉积物。有机稳定碳同位素分析显示,古土壤形成过程中气候有逐渐变干的趋势。各剖面粒度向上变细可能反映母质沉积时泛滥平原淹没能力降低、河流水位不断下降。古土壤底部化学风化程度最低,反映早期以母质堆积为主间或有成土作用;向上化学风化程度增强,指示暴露成土作用加强,而沉积作用减弱;顶部风化程度又逐渐减弱,可能是降雨量持续减少以及气候的变干变冷造成的。古土壤母质堆积过程中河流水位下降及化学风化程度的变化,是晚更新世末海平面降低过程中古河谷下切、气候变干变冷的结果。  相似文献   

19.
 贵州西部龙潭组主要含有6种沉积相组合:即浅海沉积、细粒滨岸平原沉积、溢岸沉积、小型河道砂体、叠置河道砂体和煤层。多层叠置砂体一般10-25m厚,2-10km宽,常含海绿石,切入下伏的三角洲平原、滨岸平原和浅海沉积中,被认为是下切谷充填。在龙潭组中共识别出广泛发育的10个层序界面,由此所限定的层序大致相当于4级旋回层序。在这些层序中,准层序或准层序组识别不出,然能识别体系域,层序几乎全由海进体系域(TST)和高位体系域(HST)组成,低位体系域(LST)发育不好。在垂向上,它们又可叠置成3级复合层序,并由低位、海进和高位层序组组成。在低位层序组中,河道下切常冲刷掉下伏层序的全部HST和部分TST,致使其与下伏层序的下切谷充填重合。在海进层序组中,下切作用最弱,具最小砂/泥比值,下切谷充填侧向孤立。高位层序组是低位和海进层序的过渡类型,下切谷充填也趋于孤立。  相似文献   

20.
The uplifted Pleistocene terraces along the coast of southern Sinai exhibit a well developed reef system formed during isotope stage 9, and a younger one formed during isotope stage 5. An intermediate reef corresponding to isotope stage 7 occurs only as an erosional relic in the study area. The sediments comprise reefal framestones, peri-reefal facies, coral rubble, and siliciclastic-dominated beach and aeolian facies. The compositional and textural complexity of the sediments leads to a highly variable spatial distribution of diagenetic features. However, the geometric relationships and elemental analyses allow a reconstruction of the general diagenetic evolution: during the major eustatic sea-level highstand of isotope stage 9, the Older Reef was constructed and cemented with aragonite and high-Mg calcite. Climate was probably semiarid with some rainy periods which permitted the installation of ephemeral freshwater lenses, especially during the minor sea-level lowstand within isotope stage 9. In these lenses, and during the subsequent major sea-level lowstand, some freshwater dissolution occurred. The highstand during isotope stage 7 led to the construction of the Intermediate Reef. In the Older Reef, some high-Mg calcite precipitated at that time. Dolomite cement formed either in marine interstitial waters modified by some freshwater input, or in a hypersaline context. Phreatic-meteoric low-Mg calcite cement covers, and partly replaces, previous marine cements and dolomite, but is still attributed to the major highstand of isotope stage 7 when freshwater lenses could develop during minor sea-level lowstands. The subsequent major sea-level lowstand was dominated by an arid climate, and only a little freshwater corrosion occurred. The Younger Reef formed during the major highstand of isotope stage 5. Aragonite and high-Mg calcite cements, as well as some dolomite, are common within the reef, whereas freshwater cements are limited to beach and aeolian facies. Due to tectonic uplift, only the lower part of the Older Reef was reflooded during isotope stage 5, and only some aragonite crystals precipitated on top of dolomite or low-Mg calcite. The interrelationships between tectonics, sea-level variations of different orders, and climatic changes thus had a profound impact on the diagenetic history of these reef systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号