首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Almost all galaxies have massive central black holes in their centers with masses typically ranging from ~105 to ~109 M. However, the origin and evolution of these objects and their connection with the hosting galaxies are not completely understood yet. In this work we analyze the mass accretion rate of supermassive black holes (SMBH’s) and the mean Eddington ratio (MER) of type 1 AGN using data from the Sloan Sky Survey. For this purpose we improve the method for constructing the subsample of SMBH, taking into account the survey flux limit and the bias of the sample. It was observed that the mean bolometric luminosity of the active black holes can be represented by a function composed by a power law in mass and a like-Schechter function in redshift. Our results also show that both the mean Eddington ratio and the mass accretion rate are proportional to this function.  相似文献   

2.
Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing owing to their continuum as well as emission-line properties. The observed peculiar properties of the NLS1s are believed to be as a result of an accretion rate close to the Eddington limit. As a consequence of this, for a given luminosity, NLS1s have smaller black hole (BH) masses compared with normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low-redshift, low-luminosity analogues of high-redshift quasars. We propose that NLS1s may reside in rejuvenated, gas-rich galaxies. We also argue in favour of collisional ionization for production of Fe  ii in active galactic nuclei.  相似文献   

3.
Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (\(L_{1.4\,\mathrm{GHz}} > 10^{24}\) W \(\hbox {Hz}^{-1}\)) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (\(z < 0.7\)), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff–Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.  相似文献   

4.
We analyze the spectroscopic and photometric observations of the active galactic nucleus (AGN) 1E 0754.6+3928 performed at Crimean Astrophysical Observatory in 1998–2004. Based on formal spectroscopic criteria for the optical wavelength range, we can classify this object as a narrow-line Seyfert 1 (NLS1) galaxy. Over the period of its observations, the AGN 1E 0754.6+3928 showed a very low rms flux variability amplitude in both continuum and Hβ (~3%). The Hβ time lag relative to the continuum has been found from the cross-correlation function centroid to be τ cent = 112 ?67 +215 days. This result and the Hβ line dispersion estimate have allowed us to determine the central black hole mass by the reverberation method: 1.05 × 108 M . The position of 1E 0754.6+3928 in the black hole mass-luminosity diagram agrees with the positions of other NLS1 galaxies and can be explained by an enhanced mass accretion rate in the central source.  相似文献   

5.
We investigate the relationship between the present-day optical luminosity function of galaxies and the X-ray luminosity function of Seyfert 1s to determine the fraction of galaxies that host Seyfert 1 nuclei and their Eddington ratios. The local type 1 active galactic nuclei (AGN) X-ray luminosity function is well reproduced if ∼1 per cent of all galaxies are type 1 Seyferts which have Eddington ratios of ∼10−3. However, in such a model the X-ray luminosity function is completely dominated by AGN in E and S0 galaxies, contrary to the observed mix of Seyfert host galaxies. To obtain a plausible mix of AGN host galaxy morphologies requires that the most massive black holes in E and S0 galaxies accrete with lower Eddington ratios, or have a lower incidence of Seyfert activity, than the central black holes of later-type galaxies.  相似文献   

6.
It has long been known that galaxy interactions are associated with enhanced star formation. In a companion paper, we explored this connection by applying a variety of statistics to Sloan Digital Sky Survey (SDSS) data. In particular, we showed that specific star formation rates of galaxies are higher if they have close neighbours. Here, we apply exactly the same techniques to active galactic nuclei (AGN) in the survey, showing that close neighbours are not associated with any similar enhancement of nuclear activity. Star formation is enhanced in AGN with close neighbours in exactly the same way as in inactive galaxies, but the accretion rate on to the black hole, as estimated from the extinction-corrected [O  iii ] luminosity, is not influenced by the presence or absence of companions. Previous work has shown that galaxies with more strongly accreting black holes contain more young stars in their inner regions. This leads us to conclude that star formation induced by a close companion and star formation associated with black hole accretion are distinct events. These events may be part of the same physical process, for example a merger, provided they are separated in time. In this case, accretion on to the black hole and its associated star formation would occur only after the two interacting galaxies have merged. The major caveat in this work is our assumption that the extinction-corrected [O  iii ] luminosity is a robust indicator of the bolometric luminosity of the central black hole. It is thus important to check our results using indicators of AGN activity at other wavelengths.  相似文献   

7.
On the basis of Kang et al.’s semi-analytical model of galaxy formation and evolution, the joint formation and evolution of galaxies and their central massive black holes are studied. It is assumed that the activity of quasars is caused by merging of galaxies. Via the introduction of the mass accretion rate of black holes, the bolometric luminosity function of quasars with the redshifts in the region of 0 < z < 4.5 is ascertained. With the respective limitations of the three factors, i.e., the Eddington ratio, black-hole mass function and two-point correlation function, the luminosity function predicted by the model may coincide with observations in the entire range of luminosity. This result reveals that the constant Eddington ratio cannot well describe the accretion of black holes, so the Eddington ratio has to be increased with the redshift in a certain range of redshift. The major merging of galaxies is the effective mechanism of triggering the quasar activity, while the minor merging can merely affect the quasars with low and intermediate luminosities. Its effect on the high-luminosity quasars is very small. At the place of z=1, the quasars with extremely high luminosities possess more intense properties of clustering than other quasars.  相似文献   

8.
Jet physics is again flourishing as a result of Chandra’s ability to resolve high-energy emission from the radio-emitting structures of active galaxies and separate it from the X-ray-emitting thermal environments of the jets. These enhanced capabilities have coincided with an increasing interest in the link between the growth of super-massive black holes and galaxies, and an appreciation of the likely importance of jets in feedback processes. I review the progress that has been made using Chandra and XMM-Newton observations of jets and the medium in which they propagate, addressing several important questions, including: Are the radio structures in a state of minimum energy? Do powerful large-scale jets have fast spinal speeds? What keeps jets collimated? Where and how does particle acceleration occur? What is jet plasma made of? What does X-ray emission tell us about the dynamics and energetics of radio plasma/gas interactions? Is a jet’s fate determined by the central engine?  相似文献   

9.
《New Astronomy Reviews》2000,44(7-9):573-575
We study the UV spectra of NLS1 galaxies and compare them with typical Seyfert 1 galaxies and quasars. The NLS1 spectra show narrower UV lines as well as weaker CIV λ1549 and CIII] λ1909 emission. We show that these line properties are due to a lower ionization parameter and somewhat higher BLR cloud densities. These modified conditions can be explained by the hotter big blue bumps observed in NLS1s, which are in turn due to higher L/LEdd ratios, as shown by our accretion disk and corona modeling of the NLS1 continua. We also present evidence that the Boroson and Green eigenvector 1, which is correlated with the optical and UV emission-line properties, is not driven by orientation and hence NLS1s, which have extreme eigenvector 1 values, are not viewed from an extreme viewing angle.  相似文献   

10.
We explore the role of star clusters in the nuclear regions of galaxies through their connection with active galactic nuclei (AGN). Nuclear star clusters (NCs) are conspicuous in the centers of most nearby galaxies, all along the Hubble sequence. These clusters are probably the faint-end distribution of the central supermassive black holes (SMBHs) in massive bulges. On the other hand, star formation is known to be ongoing in the majority of Seyfert nuclei and in many low-luminosity active galactic nuclei (LLAGN). We study two samples of AGN galaxies (75 Seyferts and 26 LLAGN) in the near-ultraviolet with the Hubble Space Telescope’s Advanced Camera for Surveys. We aim to better understand the connection between the growing of the SMBH and the build-up of the bulge, and we also intend to make statistical progress and determine the properties of the population of NCs coexisting with growing SMBHs.  相似文献   

11.
《New Astronomy Reviews》2000,44(7-9):451-453
Narrow-Line Seyfert 1s (NLS1s) are generally considered to be ‘strange’ Active Galactic Nuclei (AGNs). Surprisingly, this makes them very useful for constraining models. I discuss what happens when one attempts to qualitatively fit the NLS1 phenomenon using the stellar wind model for AGN line emission [e.g., Kazanas, ApJ (1989) 74]. The simplest way of narrowing profile bases of this model to the widths observed in NLS1s is probably to lower the mass of the supermassive black hole. In a flux-limited and redshift-limited data set, this is indeed similar to increasing L/LEdd. Because the broad line region (BLR) of the stellar line emission model scales with the tidal radius of the stars, this model predicts maximal BLR velocities of FWZI∝(L/LEdd)−1/3. This implies that the black holes of NLS1s are approximately 33=27 times less massive than those in other Seyfert 1s if the stellar line emission model is correct. Another consequence of increasing L/LEdd in this model is that it results in an increase in the wind edge densities. NLS1 spectra appear to support this result as well. Even the collateral features of NLS1s, such as the line asymmetries and continuum properties, appear to be easily explained within the context of this model. For better or worse, if the stellar wind line emission is correct, NLS1s are not much stranger than other AGNs.  相似文献   

12.
Here we present an overview of some of the most significant observational and theoretical studies of the broad Fe Kα spectral line, which is believed to originate from the innermost regions of relativistic accretion disks around central supermassive black holes of galaxies. The most important results of our investigations in this field are also listed. All these investigations indicate that the broad Fe Kα line is a powerful tool for studying the properties of the supermassive black holes (such as their masses and spins), space–time geometry (metric) in their vicinity, their accretion physics, probing the effects of their strong gravitational fields, and for testing the certain predictions of General Relativity.  相似文献   

13.
《New Astronomy Reviews》2000,44(7-9):563-568
The evidence is reviewed that the Broad Line Region (BLR) probably has two distinct components located at about the same distance from the central black hole. One component, BLR II, is optically-thick, low-ionization emission at least some of which arises from a disc and the other, BLR I, is probably optically-thin emission from a more spherically symmetric halo or atmosphere. The high Fe II/Hβ ratios seen in Narrow-Line Seyfert 1 galaxies (NLS1s) are not due to strong Fe II emission, as is commonly thought, but to unusually weak Balmer emission, probably caused by higher densities. NLS1s probably differ from non-NLS1s because of the higher density of gas near the black hole. This produces a higher accretion rate, a denser BLR, and a view of the central regions that is more face-on.  相似文献   

14.
The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~1000 M (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550–564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC?1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~50–100 M , moderately inefficiently accreting at ≈20 times Eddington.  相似文献   

15.
X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei (AGN), and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies ≳ 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.  相似文献   

16.
We use morphological information of X-ray selected active galactic nuclei (AGN) hosts to set limits on the fraction of the accretion density of the Universe at   z ≈ 1  that is not likely to be associated with major mergers. Deep X-ray observations are combined with high-resolution optical data from the Hubble Space Telescope in the All-wavelength Extended Groth strip International Survey, Great Observatories Origins Deep Survey (GOODS) North and GOODS South fields to explore the morphological breakdown of X-ray sources in the redshift interval  0.5 < z < 1.3  . The sample is split into discs, early-type bulge-dominated galaxies, peculiar systems and point sources in which the nuclear source outshines the host galaxy. The X-ray luminosity function and luminosity density of AGN at   z ≈ 1  are then calculated as a function of morphological type. We find that disc-dominated hosts contribute  30 ± 9  per cent to the total AGN space density and  23 ± 6  per cent to the luminosity density at   z ≈ 1  . We argue that AGN in disc galaxies are most likely fuelled not by major merger events but by minor interactions or internal instabilities. We find evidence that these mechanisms may be more efficient in producing luminous AGN     compared to predictions for the stochastic fuelling of massive black holes in disc galaxies.  相似文献   

17.
Recently, Sloan Digital Sky Survey successfully carried out the reverberation mapping of a sky area, aiming to test the R ? L relation that has been already widely used. Here, R is the responsivity-weighted radius of the broad line region, and L is the optical luminosity at 5100 Å. Two results have been obtained from the data in the first year: (1) The time lags of AGNs (Active Galactic Nuclei) with a high accretion rate are much shorter than that estimated from the R ? L relation, which confirmed the results of reverberation mapping observations made by the Lijiang 2.4 meter telescope. (2) Some AGNs with a lower accretion rate also have very short time lags. The shortening of the time lags of the AGNs with a low accretion rate is caused by the retrograde accretion of black holes. This result has verified from observations the theoretical prediction made by Wang et al. (2014). The discovery of the black holes with a retrograde accretion has important significance, it indicates that the cosmological evolution of the black holes in quasars is implemented via the inherently random accretion.  相似文献   

18.
19.
We explore the role of active galactic nuclei (AGN) in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1 Gyr) the termination of their star formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). Stacking the X-ray photons at the positions of galaxies  (0.4 < z < 0.9)  not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-infrared (IR) properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that black hole (BH) accretion outlives the termination of the star formation. This is also supported by our finding that post-starburst galaxies at z ≈ 0.8 and AGN are associated, in agreement with recent results at low z . A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after quenching their star formation.  相似文献   

20.
Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different “flavours” in the literature that now comprise a complex and confusing AGN “zoo”. It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their “big picture” through observations in each electromagnetic band from radio to \(\gamma \)-rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号