首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
This paper describes the structural-compositional zoning of the well-known Khibiny pluton in regard to rock-forming feldspars. The content of K-Na-feldspars increases inward and outward from the Main foidolite ring. The degree of coorientation of tabular K-Na-feldspar crystals sharply increases in the Main ring zone, and microcline-dominant foyaite turns into orthoclase-dominant foyaite. The composition of K-Na-feldspars in the center of the pluton and the Main ring zone is characterized by an enrichment in Al. This shift is compensated by a substitution of some K and Na with Ba (the Main ring zone) or by an addition of K and Na cations to the initially cation-deficient microcline (the central part of the pluton). Feldspars of volcanosedimentary rocks occurring as xenoliths in foyaite primarily corresponded to plagioclase An15–40, but high-temperature fenitization and formation of hornfels in the Main ring zone gave rise to the crystallization of anorthoclase subsequently transformed into orthoclase and albite due to cooling and further fenitization. Such a zoning is the result of filling the Main ring fault zone within the homogeneous foyaite pluton with a foidolite melt, which provided the heating and potassium metasomatism of foyaite and xenoliths of volcanosedimentary rocks therein. The process eventually led to the transformation of foyaite into rischorrite-lyavochorrite, while xenoliths were transformed into aluminum hornfels with anorthoclase, annite, andalusite, topaz, and sekaninaite.  相似文献   

2.
ABSTRACT

Eocene intermediate to felsic plutons of different sizes and compositions are widespread in the Eastern Pontides Orogenic Belt in northern Turkey. Of these, the Ta?l?k Tepe pluton in the Havza (Samsun) area is fine-to-medium-grained, with granular, porphyritic, and micrographic textures, and include mafic microgranular enclaves (MMEs). LA-ICP-MS U-Pb zircon dating yielded emplacement ages of 42.9 (± 1.4) and 40.5 (± 1.3) Ma for the host granodioritic pluton and the dioritic MMEs, respectively. Petrochemically, the host pluton has I-type, high-K calc-alkaline, and metaluminous-to-slightly peraluminous features (A/CNK = 0.95–1.06). The host pluton also shows geochemical features of adakite-like rocks with high SiO2 (67–68 wt%) and Al2O3 (15.5–16.0 wt%) content and Ba/La (17–23), Sr/Y (40.7–61.6), and LaN/YbN (14.4–23.7) ratios and low Y (8.2–9.9 ppm) and YbN (3.1–4.4) contents. Whole-rock major and trace element variations suggest that fractional crystallisation played a significant role in the pluton evolution. The N-MORB normalised trace element patterns of the pluton are similar to those of MMEs with enrichment in large-ion lithophile elements, Th and Ce, and negative Nb and Ti anomalies. Chondrite-normalised rare earth element plots show moderate-to-highly enriched concave patterns (LaN/LuN = 14.2–21.6) with insignificant negative Eu anomalies (EuN/Eu* = 0.86–1.14), all of which imply hornblende fractionation during magmatic evolution. The pluton samples have 87Sr/86Sr ratios of 0.704767 to 0.704927, 143Nd/144Nd ratios of 0.512767–0.512774, εNd values of (+2.52) – (+2.65), and δ18O values of 7.9–9.7‰. The isotopic compositions of the host pluton and MMEs are similar to I-type granitoids derived from mantle sources. The MMEs show incomplete magma mixing/mingling, representing small bodies of mafic parental magma. Combined with regional studies, these new data suggest that the parental magma of the studied adakite-like pluton was generated from the lithospheric mantle and then modified by fractional crystallisation and assimilation in a post-collisional setting.  相似文献   

3.
The occurrence, morphology, and composition of rinkite are considered against the background of zoning in the Khibiny pluton. Accessory rinkite is mostly characteristic of foyaite in the outer part of pluton, occurs somewhat less frequently in foyaite and rischorrite in the central part of pluton, even more sparsely in foidolites and apatite–nepheline rocks, and sporadically in fenitized xenoliths of the Lovozero Formation. The largest, up to economic, accumulations of rinkite are related to the pegmatite and hydrothermal veins, which occur in nepheline syenite on both sides of the Main foidolite ring. The composition of rinkite varies throughout the pluton. The Ca, Na, and F contents in accessory rinkite and amorphous products of its alteration progressively increase from foyaite and fenitized basalt of the Lovozero Formation to foidolite, rischorrite, apatite–nepheline rocks, and pegmatite–hydrothermal veins.  相似文献   

4.
This paper presents new SHRIMP zircon U–Pb chronology, major and trace element, and Sr–Nd–Hf isotopic data of two Early Paleozoic granitic plutons (Yierba and North Kudi) from the western Kunlun orogen, in attempt to further constrain the Proto-Tethys evolution. SHRIMP zircon U–Pb dating shows that the Yierba pluton was emplaced in the Middle Cambrian (513?±?7 Ma) and the North Kudi pluton was emplaced in the Late Silurian (420.6?±?6.3 Ma). The Yierba pluton consists of quartz monzodiorite, quartz monzonite and granodiorite. These granitoids are metaluminous and potassic, with initial 87Sr/86Sr ratios of 0.7072–0.7096, εNd (T) of ?0.2 to ?1.6 and εHf (T) (in-situ zircon) of ?1.2. Elemental and isotopic data suggest that they were formed by partial melting of subducted sediments, with subsequent melts interacting with the overlying mantle wedge in an oceanic island arc setting in response to the intra-oceanic subduction of Proto-Tethys. The North Kudi pluton consists of syenogranite and alkali-feldspar granite. These granites are metaluminous to weakly peraluminous and potassic. They show an affinity of A1 subtype granite, with initial 87Sr/86Sr ratios of 0.7077–0.7101, εNd (T) of ?3.5 to ?4.0 and εHf (T) (in-situ zircon) of ?3.9. Elemental and isotopic data suggest that they were formed by partial melting of the Precambrian metamorphic basement at a shallow depth (<30 km) during the post-orogenic regime caused by Proto-Tethyan oceanic slab break-off. Our new data suggest that the subduction of the Proto-Tethyan oceanic crust was as early as Middle Cambrian (~513 Ma) and the final closure of Proto-Tethys was not later than Late Silurian (~421 Ma), most probably in Middle Silurian.  相似文献   

5.
The Huangyangshan alkaline pluton is located within the southern part of the Eastern Junggar orogenic belt in Xinjiang Province, and forms part of the Kalamaili alkaline granite belt. The pluton hosts the Huangyangshan super-large graphite deposit, which develops unique spherical structure and coexists with metal sulfides. This study examines the genetic relationship between the alkaline magmatism that formed the pluton and the graphite mineralization using zircon LA–ICP–MS U–Pb dating, geochemical analysis for representative rock types in the Huangyangshan pluton, and new Re–Os isotope dating for the graphite in the Huangyangshan graphite deposit. Zircons from medium-grained arfvedsonite granite, medium–fine-grained amphibole granite, medium-grained biotite granite, and fine-grained biotite granite phases of the Huangyangshan pluton yield weighted mean U–Pb ages of 322.7 ± 4.5, 318.3 ± 4.0, 303.9 ± 2.1, and 301.1 ± 3.6 Ma, respectively, indicating that all of the granite phases were emplaced during the Late Carboniferous over a period of around 20 Myr. Six graphite samples from the deposit yield a Re–Os isochron age of 332 ± 53 Ma. Combining these ages with the genetic relationship between the graphite mineralization and magmatism in the study area and the relatively large uncertainty on the Re–Os isochron age for the graphite suggests that the mineralization formed at ca. 320 Ma. The graphite samples yield an initial 187Os/188Os value of 0.38 ± 0.2, indicative of carbon derived from a mixture of organic and mantle-derived sources. The different granite phases in the Huangyangshan pluton are geochemically similar with relatively high SiO2 (75.6–78.2 wt%) and Na2O + K2O (8.01–9.04 wt%) and relatively low CaO (0.18–0.7 wt%), MgO (0.06%–0.13 wt%) and Fe2O3 (TFe2O3 = 1.08–2.06 wt%) contents. The granites are enriched in light rare earth elements (LREE), large-ion lithophile elements (LILEs) (e.g. Rb, Th, and K), and high field strength elements (HFSEs) (e.g. Zr and Hf), depleted in heavy rare earth elements (HREEs), and have negative Ba, Sr, P, Ti, and Eu anomalies. These geochemical characteristics are indicative of derivation from juvenile basaltic oceanic crustal materials in the lower crust. This suggests that the Huangyangshan pluton formed from magmas generated by partial melting caused by mantle-derived magma underplating, with the magmas then undergoing mixing, separation, and significant fractional crystallization. Diorite enclaves within the granites have weaker trace element anomalies that are indicative of magma mixing. In addition, the mantle-derived intermediate–basic end-member involved in the magma mixing is likely one of the important carriers of carbon and metal. In summary, the Late Carboniferous Huangyangshan pluton and its associated graphite mineralization formed in a post-collision extensional tectonic setting in the Kalamaili area.  相似文献   

6.
The western Kunlun orogen occupies a key position along the tectonic junction between the Pan-Asian and Tethyan domains, reflecting Proto- and Palaeo-Tethys subduction and terrane collision during early Palaeozoic to early Mesozoic time. We present the first detailed zircon U–Pb chronology, major and trace element, and Sr–Nd–O–Hf isotope geochemistry of the Qiukesu pluton and its microgranular enclaves from this multiple orogenic belt. SHRIMP zircon U–Pb dating shows that the Qiukesu pluton was emplaced in the early Silurian (ca. 435 Ma). It consists of weakly peraluminous high-K calc-alkaline monzogranite and syenogranite, with initial 87Sr/86Sr ratios of 0.7131–0.7229, ?Nd(T) of –4.1 to –5.7, δ18O of 8.0–10.8‰, and ?Hf(T) (in situ zircon) of –4.9. Elemental and isotopic data suggest that the granites formed by partial melting of lower-crustal granulitized metasedimentary-igneous Precambrian basement triggered by underplating of coeval mantle-derived enclave-forming intermediate magmas. Fractional crystallization of these purely crustal melts may explain the more felsic end-member granitic rocks, whereas such crustal melts plus additional input from coeval enclave-forming intermediate magma could account for the less felsic granites. The enclaves are intermediate (SiO2 57.6–62.2 wt.%) with high K2O (1.8–3.6 wt.%). They have initial 87Sr/86Sr ratios of 0.7132–0.7226, ?Nd(T) of –5.0 to –6.0, δ18O of 6.9–9.9‰, and ?Hf(T) (in situ zircon) of –8.1. We interpret the enclave magmas as having been derived by partial melting of subduction-modified mantle in the P–T transition zone between the spinel and spinel-garnet stability fields. Our new data suggest that subduction of the Proto-Tethyan oceanic crust was continuous to the early Silurian (ca. 435 Ma); the final closure of the Proto-Tethys occurred in the middle Silurian.  相似文献   

7.
The rocks of the Khibiny pluton contain 25 amphibole varieties, including edenite, fluoredenite, kaersutite, pargasite, ferropargasite, hastingsite, magnesiohastingsite, katophorite, ferrikatophorite, magnesiokatophorite, magnesioferrikatophorite, magnesioferrifluorkatophorite, ferrimagnesiotaramite, ferrorichterite, potassium ferrorichterite, richterite, potassium richterite, potassium fluorrichterite, arfvedsonite, potassium arfvedsonite, magnesioarfvedsonite, magnesioriebeckite, ferriferronyboite, ferrinyboite, and ferroeckermannite. The composition of rock-forming amphiboles changes symmetrically relative to the Central Ring of the pluton; i.e., amphiboles enriched in K, Ca, Mg, and Si are typical of foyaite near and within the Central Ring. The Fe and Mn contents in amphiboles increase in the direction from marginal part of the pluton to its center. Foyaite of the marginal zone contains ferroeckermannite, richterite, arfvedsonite, and ferrorichterite; edenite is typical of foyaite and hornfels of the Minor Arc. Between the Minor Arc and the Central Ring, foyaite contains ferroeckermannite, arfvedsonite, and richterite; amphiboles in rischorrite, foidolite and hornfels of the Central Ring are (potassium) arfvedsonite, (potassium) richterite, magnesiokatophorite, magnesioarfvedsonite, ferroeckermannite, and ferriferronyboite; amphiboles in foyaite within the Central Ring, in the central part of the pluton, are arfvedsonite, magnesioarfvedsonite, ferriferronyboite, katophorite, and richterite. It is suggested that such zoning formed due to the alteration of foyaite by a foidolite melt intruded into the Main (Central) Ring Fault.  相似文献   

8.
The geological record of the Neoproterozoic to early Palaeozoic Proto-Tethyan Ocean in Southeast Asia is not clear. To better constrain the evolution of the Proto-Tethys, we present new geochronology, geochemistry, and petrology of the late Cambrian to Ordovician Pinghe pluton monzogranite from the Baoshan block, western Yunnan, southwest China. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of four zircon samples yield ages of 482–494 and 439–445 Ma for the pluton, interpreted as two episodes within one magmatic event accompanying the whole process of subduction–collision–orogeny between buoyant blocks and oceanic crust of the Proto-Tethys. The monzogranite belongs to the strong peraluminous, high-K, calc-alkaline series and shows characteristics of both I-type and S-type granitic rocks. It is characterized by extremely high Rb/Sr and Rb/Ba but low TiO2, MgO, FeOt, and CaO/Na2O ratios. The monzogranite is also moderately enriched in light rare earth elements (LREEs), depleted in heavy rare earth elements (HREEs), lacks HREE fractionation, and has strongly negative Eu (Eu/Eu* = 0.06–0.49), Ba, Nb, Ta, Sr, and Ti anomalies. Whole-rock εNd(t) and εHf(t) values range from ?8.7 to ?11.6 and ?5.55 to ?9.58, respectively. Nd and Hf two-stage model ages range from 1.66 to 2.06 Ga and 2.14 to 3.00 Ga, respectively, with variable radiogenic 206Pb/204Pb(t) (16.547–18.705), 207Pb/204Pb(t) (15.645–15.765), and 208Pb/204Pb(t) (38.273–38.830). These signatures suggest that the monzogranite magma was derived from partial melting of heterogeneous metapelite, which was generated from Neoarchean to Palaeoproterozoic materials mixed with basaltic magma. The monzogranite magma underwent crystallization differentiation of plagioclase, K-feldspar, and ilmenite. Magmatism to form the Pinghe pluton occurred in a post-collisional setting. Based on the comparison of coeval granites throughout adjacent regions (e.g. Himalayan orogen, Lhasa Terrane, and parts of Gondwana supercontinent), we propose that the Baoshan block was derived from the northern Australian Proto-Tethyan Andean-type active continental margin of Gondwana and experienced subduction of the Proto-Tethyan oceanic crust and accretion of an outboard micro-continent. The Pinghe pluton could have formed when a subducting oceanic slab broke off during collision.  相似文献   

9.

The Timbarra Tablelands pluton is an extensive (~550 km2) complexly zoned intrusion forming one of many predominantly monzogranite I‐type plutons, which constitute the Moonbi Supersuite in northern New South Wales, Australia. It comprises an outer rim of Rocky River monzogranite (Zones 1–3), an intermediate zone of Sandy Creek syenogranite (Zones 4A–4C), surrounding a core of Surface Hill syenogranite (Zones 5–7). The suite is calc‐alkaline, high‐K, and varies from mildly metaluminous to weakly peraluminous with increasing fractionation. Average Rb/Sr ratios range from 0.4 in the least evolved very coarse‐grained monzogranite (Zone 3) to 46 in the most evolved very fine‐grained biotite microgranite (Zone 6). Trace‐element modelling indicates that the observed compositional variation could have been produced by crystal fractionation. New bulk rock major‐ and trace‐element data for 71 samples are presented, and indicate that a compositional continuum exists that varies between 63 and 78 wt% SiO2. Importantly, there is no systematic chemical variation with spatial distribution of samples from the core of the pluton to its margin, requiring multiple separate pulses of an evolving magma to explain compositional discontinuities. The pluton is interpreted to have been emplaced at mesozonal levels (~180 ± 60 MPa, 5–10 km depth) and crystallised at temperatures between 620 and 820°C under moderately oxidising conditions (log fO2 = ‐11.5 to ‐19). The association of gold‐molybdenite mineralisation at Timbarra with moderately oxidised I‐type magmas is consistent with fractionation‐redox controls on ore‐element behaviour in magmatic systems in other studies.  相似文献   

10.
The Dahongliutan granitic pluton consists of two-mica granites and is located in the eastern part of the Western Kunlun Orogen, northwestern Tibetan Plateau. Zircon separates from the pluton yield a SIMS U–Pb age of 217.5 ± 2.8 Ma. Rocks from the pluton contain relatively high and uniform SiO2 (72.32–73.48 wt%) and total alkalis (Na2O + K2O = 8.07–8.67 wt%) and are peraluminous and high-K calc-alkaline to shoshonitic in composition. The Dahongliutan granites are relatively depleted in the high-field-strength elements and the heavy rare earth elements (HREEs) and have relatively high Rb, and low Ba and Sr concentrations. They contain low total rare earth element (REE) concentrations. The light REEs are strongly enriched relative to the HREEs, with (La/Yb)N values of 28.56–37.01. The εNd(t) values range from ?10.6 to ?8.8, and (87Sr/86Sr)i = 0.7142–0.7210. Zircons from the pluton yield εHf(t) values of ?13.8 to ?1.6, and δ18O = 10.5–11.6‰. Petrographic and geochemical features of the pluton indicate that the granites are S-type and were derived from parting melting of a mixture of metasedimentary and minor metaigneous sources in the middle–lower crust. Magmatic differentiation was dominated by the fractional crystallization of plagioclase, K-feldspar, muscovite, biotite, and accessory monazite, allanite, and Fe–Ti oxides. Regional granitoids were emplaced in the Early-to-Middle Triassic. Other younger granitoids, with ages of 240–200 Ma, are mostly I-type in character and were likely derived from multiple types of source rock, suggesting the source was heterogeneous Triassic crust. Such a scenario is consistent with their formation in a post-collisional setting. Our new data, combined with other geological evidence, suggest that the collision between the Tianshuihai and southern Kunlun terranes occurred between ca. 250 and 240 Ma, resulting in the closure of the Palaeo-Tethys. Post-collisional tectono-magmatic events may have occurred between 240 and 200 Ma.  相似文献   

11.
The Shexian gneissic granodiorite in southern Anhui trends NE 55° from Shexian in the west to Guitoujian in the east with a length of 22 km and an outcrop area of 32 km. It was considered formerly to be Caledonian on the basis of a biotite K-Ar age of 474 Ma (1982). However, new evidence indicates that it may be Early Jinning in age as shown by: (1) it is found intruding into the Mid-Proterozoic Shangxi Group and is unconformably overlain by the Sinian Xiuning Formation, and (2) a zircon U-Th-Pb age of 928 Ma is obtained for the pluton. The pluton is composed of plagioclase (An=27.37%), K-feldspar(14%), biotite(16%) and quartz(32%). Accessory minerals are ilmenite (150g/T), xenotime (15g/T). garnet(25g/T), monazite(10g/T), zircon (20g/T) and apatite (104g/T). Petrochemical characteristics of the intrusion are:(l) Al-enrichment (A/NKC=1.30); (2) H2O enrichment (H2O= 1.74%); and (3) low oxidation index (f ’=0.10). It belongs to the continental crust transformation type as evidenced by: (1) MF and Mg/Y values of biotite are 0.41 and 0.31 respectively; (2) (87Sr/86Sr)=0.71119; (3) δ Eu=0.52; and (4) A/NKC=130. The Shexian pluton is therefore considered as a product of melting of phyllite at depth in the light of similarities in trace element and REE contents with the phyllite of the Banxi Group. Calculations of REE batch partial melting indicate that it may have resulted from 75% melting of the Banxi phyllite.  相似文献   

12.
The earliest representatives in the sequence of Tertiary to Recent magmatic rocks on Adak island in the central Aleutians, are the Finger Bay Volcanics and associated small shallow-level gabbroic intrusives. The tholeiitic Finger Bay pluton (gabbro to quartz monzodiorite) is among the least altered representatives of this earliest period. The field relations, mineralogy, and geochemistry of the Finger Bay pluton contrast with the more recent calcalkaline plutons in the arc (e.g. on Adak, Hidden Bay pluton: 33 m.y. and on Kagalaska, Kagalaska pluton: 15 m.y.). Compared with the Hidden Bay pluton, the Finger Bay pluton is smaller (8 km2 versus 100 km2), has a greater proportion of gabbro (84% versus 5%), has a somewhat different mineralogy, and has higher whole rock and mafic mineral FeO/MgO ratios, higher K2O, and higher concentrations of incompatable elements in rocks of equivalent SiO2 (particularly for the more siliceous units). Magmatic amphibole occurs only in the most siliceous units in the Finger Bay pluton, whereas it is common in the calc-alkaline plutons. Except for the size, these differences parallel those between tholeiitic and calc-alkaline volcanic rocks from the active Aleutian volcanic centers. Textural, miner-alogical, and trace element analyses indicate that mixing of magmas and gabbros generated some of the rocks of intermediate (monzodiorite) composition in the Finger Bay pluton. Most of the differences in magmatic trends between the calc-alkaline and tholeiitic plutons are attributed to the physical conditions of magmatic evolution in the crust, rather than to differences in initial magmatic types. This conclusion rests on the similarity of fractionation-independent isotope ratios and trace element ratios in Aleutian magmas of all ages. In particular, compared to magmas of the north Pacific ocean basin (MORB, oceanic islands), Aleutian magmas show excess enrichment of Ba, K, Rb, and U relative to REE and high 207Pb/204Pb ratios for a given 206Pb/204Pb ratio. Recognition of tholeiitic series plutons in the arc provides direct evidence for magmatic conditions accompanying fractionation, and serves to emphasize the diversity of magmatic trends that are found over time and space at convergent plate margins.  相似文献   

13.
The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we present zircon U-Pb ages and petrological, geochemical and in situ Hf isotope data for the Xierzi biotite monzogranite pluton, Linxi, SE Inner Mongolia. U-Pb dating of zircon by LA-ICP-MS yields a middle Permian emplacement age(268.7 ± 2.3 Ma) for the Xierzi pluton that is dominated by biotite monzogranites with high SiO_2(71.2-72.8 wt.%),alkali(Na_2 O + K_2 O =8.05-8.44 wt.%), Al_2 O_3(14.4-15.2 wt.%) and Fe_2 O_3~T relative to low MgO contents, yielding Fe_2 O_3~T/MgO ratios of 2.87-3.44, and plotting within the high-K calc-alkaline field on a SiO_2 vs. K_2 O diagram. The aluminum saturation indexes(A/CNK) of the biotite monzogranites range from 1.06 to 1.19, corresponding to weakly to strongly peraluminous. They are enriched in rare earth elements(REE), high field strength elements(HFSEs; Zr,Hf). and large ion lithophile elements(LILEs; Rb, U, Th). The LREEs are enriched relative to the HREEs,with a distinct negative Eu anomaly in a chondrite-normalized REE diagram. Geochemically, the Xierzi biotite monzogranite is classified as an aluminous A-type granite, with all samples plotting within the A2-type granite field on a Y/Nb vs. Rb/Nb diagram. Zircon ε_(Hf)(t) values and two-stage modal ages of the zircons within the pluton range from +4.80 to +13.65 and from 983 to 418 Ma, respectively, indicating that the primary magma was generated through partial melting of felsic rocks from juvenile crust.Consequently, these results demonstrate that the Xierzi pluton formed under the post-orogenic extensional setting after arc-continent collision in the middle Permian.  相似文献   

14.
The Kejie pluton is located in the north of the Changning-Menglian suture zone. The rock types are mainly biotite-granite. Zircon LA-ICP-MS U-Pb dating indicates that the Kejie pluton emplaced at about 80–77 Ma, Late Cretaceous. The Kejie pluton samples are characterized by high SiO2(71.68%–72.47%), K2O(4.73%–5.54%), total alkali(K2O + Na2O = 8.21%–8.53%), K2O/Na2O ratios(1.36–1.94) and low P2O5(0.13%–0.17%), with A/CNK of 1.025–1.055; enriched in U, Th, and K, depleted in Ba, Nb, Sr, Ti, P and Eu. They are highly fractionated, slightly peraluminous I-type granite. The two samples of the Kejie pluton give a large variation of εHf(t) values(-5.04 to 1.96) and Hf isotope crustal model ages of 1.16–1.5 Ga. Zircon Hf isotopes and zircon saturation temperatures of whole-rock(801°C–823°C) show that the mantle-derived materials maybe have played a vital role in the generation of the Kejie pluton. The Kejie pluton was most likely generated in a setting associated with the eastward subduction of the neo-Tethys ocean, where intrusion of mantle wedge basaltic magmas in the crust caused the anatexis of the latter, forming hybrid melts, which subsequently experienced high-degree fractional crystallization.  相似文献   

15.
ABSTRACT

Early Cretaceous adakite or adakitic plutons are widely distributed in central eastern China, e.g. lower Yangtze river belt (LYRB), the south Tan–Lu fault (STLF), and the Dabie orogen. Their genesis, however, remains controversial. In this contribution, we present detailed geochemical and geochronological study on the Guandian pluton in central Anhui Province, eastern China, which has been formerly regarded as a part of the north belt in the LYRB and lately classified in the STLF. Namely, it is located near the boundary between ridge subduction related slab melting and partial melting of lower continental crust (LCC). The Guandian pluton consists of quartz monzonite and is metaluminous and high-K calc-alkaline according to the chemical composition. The samples show high SiO2 (59.15–62.32%), Al2O3 (14.51–15.39%), Sr (892–1184 ppm), Sr/Y (56.74–86.32), and low Y (12.65–18.05 ppm), similar to typical geochemical features of adakite. The Guandian adakitic rocks also exhibit high K2O (2.88–3.86%), MgO (3.89–5.24%), and Mg# (55–60), negative anomalies of high field strength elements (e.g. Nb, Ta, and Ti), and positive anomalies of Ba, Pb, and Sr. LA-ICP-MS zircon U–Pb dating yielded a weighted average age of 129.2 ± 0.7 Ma. Calculations of zircon Ce4+/Ce3+ (6.97–145) and (Eu/Eu*)N (0.23–0.42) on the basis of in situ zircon trace element analysis indicate that the magma had a lower oxygen fugacity relative to the ore-bearing adakites in the LYRB and Dexing, which is consistent with the fact of ore-barren in the research area. In combination with previous research, we propose that Guandian adakitic pluton was formed by partial melting of delaminated LCC triggered by Early Cretaceous ridge subduction of the Pacific and Izanagi plates. During ridge subduction, physical erosion destructed the thickened LCC and resulted in delamination, while thermal erosion facilitated partial melting of the delaminated LCC.  相似文献   

16.
《Gondwana Research》2002,5(2):307-324
The Caleu pluton (Central Chile) extending over 338 km2 and with more than 1, 400 m of vertical relief intrudes the N-S trending Lower Cretaceous volcano-sedimentary and volcanic successions at a depth equivalent to a pressure of 2 kb. The host, stratified volcanic successions, are tilted about 30°–40° E, whereas the pluton shows paleomagnetic evidence of either tilting of <15° E or clockwise rotation by few degrees.A gradient of westward increasing SiO2 content is recognized across the pluton, giving rise to three N-S elongated zones: Gabbro/Diorite Zone (GDZ), Tonalite Zone (TZ) and Granodiorite Zone (GZ). Biotite and hornblende compositions also exhibit a westward decreasing gradient in Mg/(Mg+Fe), indicating that the more mafic the zone is, the more oxidizing is its crystallization condition. Horizontal inward gradients of progressively less evolved rocks are recognized across GDZ and TZ, whereas no horizontal gradients were found in the GZ. Vertical compositional gradients are recognized in the GDZ and TZ, which consist of an upward increase in SiO2 and decrease in MgO, FeO, Fe2O3, and compatible trace elements. A vertical compositional boundary was recognized along a traverse across the TZ separating two magma pulses with similar trends of compositional variations.The three zones of the Caleu pluton were derived from a common isotopically (Sr-Nd) depleted source. Each zone probably evolved independently, as their compositional characteristics would have not been acquired in situ. The resulting compositional characteristics of the zones would have been developed prior to the intrusion, in a subjacent stratified reservoir placed at about seven kilometers below the pluton.  相似文献   

17.
The Indosinian orogeny is recorded by Triassic angular unconformities in Vietnam and South China and by widely occurring granitoids in the Yunkai-Nanling and the Xuefengshan belts of South China. The Longtan pluton in the northwestern part of the Xuefengshan belt is a typical high-K, calc-alkaline, I-type granitoid, which can shed light on the relationship between the Indosinian tectonic and magmatic activity in the region. Three precise zircon U–Pb ages yielded a mean of 218 ± 0.8 Ma, which is taken as the age of crystallization. The pluton consists of both granodiorite (64.59–68.01 % SiO2 and 3.25–4.22 % K2O) and granite (70.49–71.80 % SiO2 and 4.07–4.70 % K2O). The granodiorites are characterized by relatively high Mg# (54–57), low contents of Na2O (3.2–4.3 wt%), low abundances of incompatible elements (LILE, Nb and P), high initial 87Sr/86Sr (0.7175–0.7184) and negative εNd(t) (?9.98 to ?9.72). REE patterns show moderate fractionation ((La/Yb)cn = 8.07–18.80) with negative Eu anomalies (Eu/Eu* = 0.62–0.86). Compared with the granodiorite, the granite has a wider range of Mg# (49–59), lower contents of Na2O (2.8–4.2 wt%), higher initial 87Sr/86Sr (0.7232–0.7243) and more negative εNd(t) (?12.07 to ?11.24) values. REE patterns are relatively flat ((La/Yb)cn = 14.73–29.37) with smaller negative Eu anomalies (Eu/Eu* = 0.48–0.63). The granodiorite has lower K2O/Na2O and Al2O3/(MgO + FeOTot) values than the granite. Based on major and trace element geochemistry and Sr–Nd isotopes, we interpret the Longtan granodioritic magma to have been derived by partial melting of interlayered Proterozoic metabasaltic to metatonalitic source rocks, whereas the granite was probably derived from a mixture of Proterozoic metagraywackes and metaigneous rocks. Field, petrographic and geochemical evidence indicate that partial melting and fractional crystallization were the dominant mechanism in the evolution of the pluton. The Longtan granodiorites and granites are petrologically and geochemically similar to typical Indosinian varieties and are considered to have been produced in a similar manner. The Indosinian granitoids in the region show a magmatic peak age of ~238 Ma from the Yunkai-Nanling belt in the southeast and a magmatic peak age of ~218 Ma of the Xuefengshan belt to the northwest. These early and late magmatic episodes of the Indosinian granitoids also display slight variations of regular compositions, εNd(t) values and T DM ages. Thus, we propose a syncollisional extension model that Indosinian granitoids were generated by decompressional partial melting of crustal materials triggered by two extensions during collision of the Indochina and South China blocks. The Longtan pluton in the northwesternmost part of the orogenic belt marks the termination of the Indosinian magmatism and orogenesis.  相似文献   

18.
以新疆东天山旱草湖地区中酸性环状岩体为研究对象,进行LA-ICP-MS锆石U-Pb年龄和全岩地球化学研究,探讨其成因和地质意义。结果表明,侵入英云闪长岩的最老年龄为275.0±2.9Ma(MSWD=4.8),侵位时代为二叠纪。岩体Al_2O_3含量为14.46%~17.05%,A/CNK为0.93~1.09,属准铝质和弱过铝质系列,较富集K_2O,MgO含量较低,为0.71%~2.84%,Mg~#值为33.3~48.6。微量元素高Sr、低Y,Sr含量为217×10~(-6)~740×10~(-6),Y含量为4.26×10~(-6)~21.4×10~(-6),Sr/Y值为16.87~145.07,富集大离子亲石元素Rb、Sr、Ba,亏损高场强元素Nb、Ta、Ti。稀土元素配分模式图呈现平坦右倾的轻稀土元素富集、重稀土元素亏损,表明岩体来源于石榴子石和金红石较稳定而斜长石不稳定的区域,属于角闪岩相向榴辉岩相过渡阶段,可能是同时期底侵的产物。地球化学特征表明岩体不是一期岩浆事件结晶分离演化的结果,不同岩性的岩体之间没有发生结晶分离。部分熔融程度和新生幔源组分的不同导致了旱草湖环状花岗质岩体的形成,二叠纪旱草湖地区存在较强烈的中酸性岩浆活动,是东天山二叠纪构造-岩浆演化的响应。  相似文献   

19.
A number of studies revealed that the Gangdese magmatic belt of southern Tibet was closely related to the northward subduction of the Neo-Tethys oceanic lithosphere and Indo-Asian collision.However,pre-Cretaceous magmatism is still poorly constrained in the Gangdese magmatic belt,southern Tibet.Here,we conducted systematically geochronology and geochemistry studies on a newly-identified granitic pluton in the middle Gangdese magmatic belt(Namling area),southern Tibet.Zircon SHRIMPⅡU-Pb dating for one representative sample gives a weighted age of 184.2±1.8 Ma(MSWD=±1.11),corresponding to emplacement and crystallization age of the granitic pluton in the Early Jurassic(Pliensbachian).High SiO2(68.9-72.1 wt.%)contents and intermediate Mg#values(35-38)together suggest that the newly-identified granitic pluton was probably formed by partial melting of crustal material with minor injection of mantle-derived magma,precluding an origin from melting of metasedimentary rocks that are characterized by low Mg#and high zirconδ^18O values(>8‰).Geochemically,the newly-identified granitic pluton belongs to typical I-type granitic affinity,whereas this is inconsistent with aluminium saturation index(ASI=A/CNK ratios)and geochemical signatures.This suggests that zircon oxygen isotopes(4.30‰-5.28‰)and mineral features(lacking Al-rich minerals)are reliable indicators for discriminating granitic origin.Significantly depleted whole-rock Sr-Nd-Hf isotopic compositions and zirconεHf(t)values indicate that the granitic pluton was derived from partial melting of depleted arc-type lavas.In addition,the granitic pluton shows zirconδ^18O values ranging from 4.30‰to 5.28‰(with a mean value of 4.77‰)that are consistent with mantle-derived zircon values(5.3‰±0.6‰)within the uncertainties,indicating that the granitic pluton might have experienced weak short-living high-temperature hydrous fluid-rock interaction.Combined with the Sr-Nd-Hf-O isotopes and geochemical signatures,we propose that the newly-identified granitic pluton was originated from partial melting of depleted mafic lower crust,and experienced only negligible wall-rock contamination during ascent.Integrated with published data,we also propose that the initial subduction of the Neo-Tethys oceanic lithosphere occurred no later than the Pliensbachian of the Early Jurassic.  相似文献   

20.
Abstract: The Dajing Cu–Sn–Ag–Pb–Zn ore deposit, Inner Mongolia of China, is a fissure‐filling hydrothermal ore deposit that occurs within the Upper Permian Linxi group. No magmatic pluton and volcanic rocks outcrop on the surface of the deposit. Most of ore veins show clear‐cut boundary with country rocks. Wallrock alterations that include silicification, carbonation, chlori–tization, and sericitization are generally weak and occur in the close vicinity of ore veins. Mineralization is divided into three stages: (1) cassiterite–arsenopyrite–quartz stage, (2) sulfide stage, and (3) Pb–Zn–Ag–carbonate stage. These mineralization stages have distinct ranges of homogenization temperatures, 290–350C for Stage 1, 260–320C for Stage 2, and 150–250C for Stage 3. However, salinities for Stages 1, 2, and 3 overlap and range between 2.2 and 10.4 wt % NaCl equivalent. The dD values relative to V‐SMOW of inclusion water from quartz are lower than –88% and centered at –100 to –130%. The δ34S values relative to CDT of sulfide ore minerals and δ13C values relative to PDB of carbonate gangue minerals, vary from –0.3 to +2.6%, and from –7.0 to –2.9%, respectively. Integrated isotopic data point to two major contributions to the mineralizing fluid that include a dominant meteoric‐derived water and the other from hypogene magma for sulfur and carbon species. Analyses of inclusion gas and liquid compositions are performed. The H2O and CO2 are the two most abundant gaseous components, whereas SO42‐ and Cl, and Na+, Ca2+, and K+ are the major anions and cations, respectively. A linear trend is shown on the gaseous H2O versus CO2 plot. Phase separation is excluded as cause for the trend on the basis of isotope data and fluid inclusion microthermometry. In addition, a weak wallrock alteration does not support fluid‐rock interaction as an efficient mechanism. Hence, the linear H2O–CO2 trend is interpreted in terms of absorption or dilution of CO2–dominant magmatic vapor by meteoric‐derived water. Cooling effects resulting from dilution may have caused precipitation of ore minerals. Major and trace element compositions of regional granites show a high‐K calc–alkaline characteristics and an arc–affinity. Lead isotopic compositions of galena samples from the Dajing deposit exhibit elevated U/Pb and Th/Pb ratios. These characteristics indicate a common source of supra subduction zone mantle wedge for regional granites and metals from the Dajing deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号