首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
通过两个时像的对比解译、调查验证和研究,表明长江-黄河上游源区20世纪90年代初至21世纪初的10年中,沼泽湿地总体呈减少趋势.由于自然和人为综合因素的长期作用,使本区沼泽湿地处于萎缩状态.  相似文献   

2.
长江-黄河源寒区径流时空变化特征对比   总被引:32,自引:8,他引:32  
长江源区比黄河源区寒冷而干燥, 年径流量仅为黄河源区的60%, 径流年内分配较黄河源区均匀性差, 丰水年与枯水年比例基本相当, 而黄河源区枯水年占较大优势. 近40 a来长江源区径流量总体上呈明显的递减趋势, 黄河源区径流量则呈现略微增长趋势. 长江源区径流量以8~9 a的周期变化较为显著, 黄河源区径流量则以7~8 a周期比较显著. 对寒区径流变化的主要影响因子分析表明, 长江源区温度因子对径流年际变化影响大于黄河源区, 而降水因子影响相对较小, 长江源区寒区水文环境对径流影响较大是造成长江、黄河源区径流差异形成的主要原因.  相似文献   

3.
若尔盖沼泽湿地遥感动态监测   总被引:16,自引:0,他引:16  
应用二个同月份不同年代的卫星遥感资料,对若尔盖沼泽湿地近20多年来的空间变化进行了遥感动态监测,监测表明若尔盖沼泽湿地正处于萎缩退化的过程之中。  相似文献   

4.
黄河源区河流阶地特征及源区黄河的形成   总被引:2,自引:0,他引:2       下载免费PDF全文
提要:本文通过对黄河源区河流阶地的系统测量和研究,认为黄河源区黄河阶地主要由堆积阶地组成,少量侵蚀阶地,阶地拔河高度低,阶面比较开阔平坦。黄河自源头至入扎陵湖段仅发育一级河流阶地,从鄂陵湖出水口至黄河乡段发育两级河流阶地,从黄河乡以下至久治县东段发育三级河流阶地。结合ESR测年结果,黄河源区河流阶地形成的时间主要为中更新世晚期—全新世,T1河流阶地的形成时代约为1万年;T2河流阶地的形成时代为5.8~1.9万年;T3河流阶地的形成时代为16.1~2.5万年。河流阶地研究表明,黄河在源区形成较晚,可能为晚更新世晚期。  相似文献   

5.
黄河源区气温变化特征及预估分析   总被引:1,自引:0,他引:1  
利用黄河源区青海段9个代表性站点1961-2017年逐日气温资料和未来RCP4.5排放情景下的预估数据,分析和预估了黄河源区年平均、年平均最高、年平均最低和极端气温变化特征。结果表明:近57年来年平均最高、年平均、年平均最低气温均呈显著上升趋势且倾向率依次增大。年平均气温和年平均最高气温在1997年存在显著突变。通过分析1961-1997年、1998-2007年以及2008-2017年阶段性变化可知,年平均气温持续上升,年平均最高气温先上升后趋于稳定,而年平均最低气温升温速率在1998-2007年最大,2008-2017年升温速率较1998-2007年有所降低。暖昼日数持续增多,霜冻日数和冰封日数持续减少,冷夜日数在1998-2007年减少速率最低,近10年来减少速率增大。未来33年黄河源区年平均、年平均最高、年平均最低气温和极端暖事件均呈明显的增加趋势,极端冷事件呈减少趋势。对黄河源区过去和未来气温变化规律进行了探讨,将为该区域气温变化对策的制定与实施提供理论依据。  相似文献   

6.
黄河源区自然地理环境特殊,冻融地质作用强烈,冻融地质现象普遍发育,以山地顶部裸岩、寒冻风化岩屑坡、山地斜坡冻融滑移、山前倾斜平原及河谷平原冻胀—融陷作用为表征,对应于源区不同的地形地貌条件和自然地理单元,呈鲜明的山地垂直分带规律和冻融荒漠化生态景观。  相似文献   

7.
中国青藏高原黄河源区冰缘地貌特征   总被引:6,自引:0,他引:6  
边纯玉  郭鹏飞 《冰川冻土》1990,12(2):147-153
  相似文献   

8.
黄河源区黄河袭夺长江水系之初探   总被引:1,自引:0,他引:1  
程捷  田明中  张绪教 《地学前缘》2007,14(1):251-256
对黄河源区的河流地貌研究表明,该区共发育三级阶地,其中第一、第二级阶地形成于晚更新世的末期至全新世,而第三级阶地形成于晚更新世晚期。在晚更新世晚期,多石峡被切开,黄河源区晚更新世湖泊消失,现今黄河形成。随着现今黄河的形成和晚更新世湖泊的消失,南岸支流之一的多曲向南溯源侵蚀加强,并穿越巴颜喀拉山,夺取了巴颜喀拉山南侧原属于长江流域的贝敏曲和洛曲,使分水岭向南推进了25km,袭夺的时间为晚更新世末期。  相似文献   

9.
黄河源区20多年来土地覆盖/利用变化的遥感分析   总被引:1,自引:0,他引:1  
通过土地专题遥感信息提取方法的研究,采用分层剔除手段和掩膜技术实现了黄河源区土地覆盖/土地利用变化的多时相信息自动提取与高精度定量化。结果表明,源区20多年来沼泽湿地急剧减少,重度荒漠化土地以6.03%的年速率递增,至2000年时已增至1976年的4.44倍,沙漠面积由1976年的约60km^2扩展至2000年的140km^2。  相似文献   

10.
黄河源区海拔3800—4200m以上均有片状多年冻土分布,寒冻剥蚀地貌、冻融地貌、冷生砂丘、埋藏冰及古冰缘现象都有分布。本文从地层学与冰缘现象之间的关系出发,划分了中更新世、晚更新世和近代(现代)三个冰缘期。  相似文献   

11.
In the source regions of the Yangtze and Yellow Rivers of China, glaciers, frozen ground, the hydrological system, and alpine vegetation have changed over the past decades years. Climatic causes of these variations have been analyzed using mean monthly air temperature and monthly precipitation between 1956 and 2000, and monthly evaporation from φ20 evaporation pans between 1961 and 1996. In the source region of the Yangtze River, lower temperature and plentiful precipitation during the 1960s and continuing into the early 1980s triggered a glacier advance that culminated in the early 1990s, while a robust temperature increase and precipitation decrease since 1986 has forced glaciers to retreat rapidly since 1995. Permafrost degradation is another consequence of the climatic warming. The variations in the hydrological system and alpine vegetation are controlled mainly by the climate during the warm season. Warmer and drier summer climate is the major cause of a degradation of the vegetation, desiccation of the high-cold marshland, a decrease in the areas and numbers of lakes and rivers in the middle and north source regions of the Yangtze and Yellow Rivers, and a reduction in surface runoff in the source region of the Yangtze River for the last 20 years. The causes of eco-environmental change in Dari area, near the outlet from the source area of the Yellow River, are different from those elsewhere in the study area. A noticeable reduction in runoff in the source region of the Yellow River and degradation of alpine vegetation in Dari area are closely related to the permafrost degradation resulting from climate warming.  相似文献   

12.
40a来江河源区的气候变化特征及其生态环境效应   总被引:68,自引:19,他引:68  
通过江河源区分布的5个气象台站有关气温与降水的多年数据,分析了近40a来江河源区的气候变化特征,结果表明,近40a来江河源区气候变化的总趋势是气温升高,降水量增加,但降水量的增加主要体现在春季降水和近15a来冬季降水的明显增加上,对植被生长起重要作用的夏季降水量却呈明显减少趋势;江河源区20世纪80年代10a平均气温比50年代高0.12~0.9℃,大部分地区高于0.3℃,属于青藏高原高温区或升温幅度最大的地区之一,平均升温0.44℃,明显比全国平均升温0.2℃要高出一倍,在这种背景下,与植被生长关系密切的4、5月和9月气温呈现持续下降态势,江河源区脆弱的生态环境体系对气候的这种变化响应强烈,冰川退缩,多年冻土消融加剧,导致大范围高寒草甸与草原被植退化。  相似文献   

13.
Spatial and temporal variations in alpine vegetation cover have been analyzed between 1982 and 2001 in the source regions of the Yangtze and Yellow Rivers on the Tibetan Plateau. The analysis was done using a calibrated-NDVI (Normalized Difference Vegetative Index) temporal series from NOAA-AVHRR images. The spatial and temporal resolutions of images are 8 km and 10 days, respectively. In general, there was no significant trend in alpine vegetation over this time period, although it continued to degrade severely in certain local areas around Zhaling and Eling Lakes, in areas north of these lakes, along the northern foot of Bayankala Mountain in the headwaters of the Yellow River, in small areas in the Geladandong region, in a few places between TuoTuohe and WuDaoliang, and in the QuMalai and Zhiduo belts in the headwaters of the Yangtze River. Degradation behaves as vegetation coverage reduced, soil was uncovered in local areas, and over-ground biomass decreased in grassland. The extent of degradation ranges from 0 to 20%. Areas of 3×3 pixels centered on Wudaoliang, TuoTuohe, QuMalai, MaDuo, and DaRi meteorological stations were selected for statistical analysis. The authors obtained simple correlations between air temperature, precipitation, ground temperature and NDVI in these areas and constructed multivariate statistical models, including and excluding the effect of ground temperature. The results show that vegetation cover is sensitive to variations in temperature, and especially in the ground temperature at depths of ∼40 cm. Permafrost is distributed widely in the study area. The resulting freezing and thawing are related to ground temperature change, and also affect the soil moisture content. Thus, degradation of permafrost directly influences alpine vegetation growth in the study area.  相似文献   

14.
近40a来江河源区生态环境变化的气候特征分析   总被引:69,自引:12,他引:57  
利用月气象资料,对过去40a江河源气候变化特征进行分析,并与全球、全国、青藏高原进行了比较.结果表明:江河源区气温具有增暖趋势,近40a两地年平均气温分别增加约0.8℃和0.7℃,为高原异常变暖区.黄河源区变暖的主要特征是最低气温变暖,日照时数增加;最低、最高气温的显著变暖,以及较黄河源区增加更长的日照时数是长江源区变暖的主要特征.长江源区冬季变暖的作用不是主要的,春季、夏季和秋季的变暖作用比冬季还要大;黄河源区的变暖也并不主要是冬季变暖造成的,秋季变暖的作用与其相当,其它季节的变暖作用也不能忽视.近40a来江河源区降水量略有增加,主要体现在20世纪80年代中后期以来春季与冬季降水量的明显增加,夏季降水量虽然总体上没有明显变化,且局地夏季降水量呈持续减少趋势.与全球、全国以及高原区对比显示,江河源区对全球气候变暖的响应最敏感,变暖首先从长江源和整个高原发端,之后15a.黄河源和全国才进入显著温暖期.黄河源与长江源北部降水量的增加表明,气候变暖有利于高原增加降水量.  相似文献   

15.
长江黄河源区积雪空间分布与年代际变化   总被引:1,自引:0,他引:1  
应用长江黄河源区及其周边地区16个气象站逐日积雪资料,分析了长江黄河源区积雪的空间分布和年代际变化特征.结果表明:以巴颜喀拉山主峰为中心的黄河源头和长江源东南部地区是年积雪深度高值中心,黄河源头以西和五道梁以东的长江源东北部和黄河源西北部广大地区是低值中心.冬春累积积雪深度占年累积积雪深度的比例>71.0%,夏半年(6~9月)对其的贡献小,但夏半年的积雪日数占年积雪日数的1/3.曲麻莱达日一线以南地区积雪主要发生在1月份,以北地区一年有两个高值期:前冬10~11月和春季3~5月.长江源和黄河源头地区积雪建立早,积雪季节长,结束晚,消退过程缓慢;而黄河源东部地区,积雪建立稍晚,积雪发展比较缓慢,消退过程迅速.近40 a来长江黄河源区积雪呈确定的增长态势,长江源区冬春积雪增长了62.11%,黄河源区增长了60.18%.但二者积雪变化位相基本相反,变化幅度长江源大起大落,而黄河源比较平缓,多雪年份出现也不一致.整个源区20世纪60年代至70年代初为积雪偏少期,70年代中期至90年代是积雪偏多期.从20世纪70年代中至80年代末,积雪明显增加,90年代积雪增加速度有所放慢,近40 a江河源区平均冬春累积积雪深度增加了60.95%.长江源区对整个源区积雪变化起主导作用,源区平均冬春累积积雪深度变化主要表现长江源的特征.  相似文献   

16.
郭晓寅  何勇  沈永平  冯丁 《冰川冻土》2006,28(4):512-518
基于EOS/MODIS卫星遥感资料的分析表明,2000-2004年江河源地区陆地植被平均年NPP为82.04 gC.m-2,相当于同期全国陆地植被年NPP的23%,其中2001年的年NPP最小,只有78.04gC.m-2,2002年最大,为85.44 gC.m-2.根据年NPP分布显示,黄河源区的植被生长状况要好于长江源区,其中在黄河源东南部陆地植被的年NPP>250 gC.m-2,为江河源区植被年生长最大的区域;该地区的植被年NPP最小值的区域分布在长江源的西北部地区,年NPP大部分<50 gC.m-2.江河源地区植被的年NPP表现为显著的年际变化特征,不同地区年NPP的变化特征各不相同;高寒草甸的年NPP为该地区所有陆地植被年NPP中最大,其5 a平均值为89.38 gC.m-2,其次为高寒草原和灌木及草本植被;由于地处高寒地区,温度成为影响该地区陆地植被净初级生产力的主要因素.  相似文献   

17.
Significant differences are noticed in major and trace element compositions between the Yangtze River and the Yellow River surface sediments.The former sediments are rich in some major elements such as K,Fe,Mg,Al,and most of the trace elements which show wide variations in element concentrations,whereas the Yellow River sediments only have higher Ca,Na,Sr,Ba,Th,Ga,Zr,Hf contents and show slight variations in element contents.In the Yangtze River Basin are widely distributed intermediate-acid igneous rocks and complicated source rocks together with strong chemical weathering which determine the elemental compositions of the Yangtze River sediments,while the elemental compositions of the Yellow River sediments are decided by the chemical composition of loess from the Loess Plateau and intense physical weatering.Cu,Zn,Sc,Ti,Fe,V,Ni,Cr,Co,Li and Be can be used to distinguish the Yangtze River sediments from te Yellow River sediments and be treated as tracers for both the sediments to study the processes of their mixing and diffusion in the coastal zones of China.  相似文献   

18.
青海高原湿地特征及其保护   总被引:39,自引:11,他引:28  
青海省地处青藏高原东北部,是我国长江、黄河和澜沧江的发源地,素有"江河源"之称.青海高原湿地类型包括自然湿地和人工湿地两大类型,湿地总面积约55662.7km2,占全省土地总面积的7.7%.高原湿地分布特点主要表现为3种形式:1)以湖泊或浅塘为中心的环带状分布;2)以河流为中心的条带状分布;3)河源区的斑块状镶嵌分布.高原湿地生物种类较为丰富,有湿地种子植物约428种;湿地动物约151种,其中鸟类约73种、鱼类约55种、哺乳类约14种以及两栖类9种.湿地植被有水生植被、沼泽植被和沼泽草甸3大基本类型.近几十年来,青海高原湿地出现湖泊水位下降、湖泊面积萎缩、河流出现断流以及沼泽湿地退化等方面的明显变化.鉴于高原湿地的生态功能和作用,应加强青海高原湿地的保护.  相似文献   

19.
Natural runoff observation fields with different vegetation coverage were established in the Zuomaoxikongqu River basin in the headwater area of the Yangtze River, and in the Natong River basin and the Kuarewaerma River basin in the headwater area of the Yellow River, China. The experiments were conducted using natural precipitation and artificially simulated precipitation between July and August to study the runoff and sediment-producing effects of precipitation under the conditions of the same slope and different alpine meadow land with coverage in the headwater areas. The results show that, in the three small river basins in the headwater areas of the Yangtze and the Yellow Rivers, the surface runoff yield on the 30° slope surface of the alpine meadow land with a vegetation cover of 30% is markedly larger than that of the fields with a vegetation cover of 95, 92, and 68%. Furthermore, the sediment yield is also obviously larger than the latter three; on an average, the sediment yield caused by a single precipitation event is 2–4 times as large as the latter three. Several typical precipitation forms affecting the runoff yield on the slope surface also influence the process. No matter how the surface conditions are; the rainfall is still the main precipitation form causing soil erosion. In some forms of precipitation, such as the greatest snow melting as water runoff, the sediment yield is minimal. Under the condition of the same precipitation amount, snowfall can obviously increase the runoff yield, roughly 2.1–3.5 times as compared to the combined runoff yield of the Sleet or that of rainfall alone; but meanwhile, the sediment yield and soil erosion rate decrease, roughly decreasing by 45.4–80.3%. High vegetation cover can effectively decrease the runoff-induced erosion. This experimental result is consistent in the three river basins in the headwater areas of the Yangtze and Yellow Rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号