首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topological defect theories lead to non-Gaussian features on maps of fluctuations of the cosmic microwave background radiation (CMBR), which enable us to distinguish them from maps predicted by standard inflationary models. We have recently presented a maximum entropy method (MEM) which simultaneously deconvolves interferometer maps of CMBR fluctuations, and separates out foreground contaminants. By applying this method to simulated observations using a realistic ground-based interferometer, we demonstrate that it is possible to recover the prominent hotspots in the CMBR maps which delineate individual defects, even in the presence of a significant Galactic foreground.  相似文献   

2.
We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D‐3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100–300 individual measurements of apparent particle diameter.  相似文献   

3.
Three different models of electron concentration height profile have been compared to profiles obtained from ionograms at the Warsaw station. The electron density profiles are obtained from ionograms by inversion methods. These models use as an input the standard ionospheric characteristics. Some of the models are intended to compute monthly median profiles. To obtain the instantaneous profile the values of needed parameters are taken from the simultaneously constructed instantaneous maps of ionospheric parameters. For instantaneous maps construction, two techniques are used: the kriging technique with modifications concerning ionospheric behaviour, where deviations of measurements from monthly median maps are used, and a fitting method where median maps are updated with measurements. The comparison is done for the COST 238 PRIME height profile model, a local model based on a modified Rush model, and a model where an artificial neural network technique is aaplied to time series of profiles. The usefulness of the average representative height profile constructed from a set of instantaneous profiles is discussed.  相似文献   

4.
Low-inclination, low altitude Earth orbits (LEO) are of increasing importance for astrophysical satellites, due to their low background environment. Here, the South Atlantic Anomaly (SAA) is the region with the highest amount of radiation. We study the radiation environment in a LEO (500–600 km altitude, 4° inclination) through the particle background measured by the Particle Monitor (PM) experiment onboard the BeppoSAX satellite, between 1996 and 2002. Using time series of particle count rates measured by PM we construct intensity maps and derive SAA passage times and fluences. The low-latitude SAA regions are found to have an intensity strongly decreasing with altitude and dependent on the magnetic rigidity. The SAA extent, westward drift and strength vs altitude is shown.  相似文献   

5.
Solar radio maps obtained by our group and others over a wide wavelength range (millimeter to meter) and over a considerable time span (1973–1978) have allowed us to compute the radio spectrum of an average coronal hole, i.e., the brightness temperature inside a coronal hole normalized by the brightness temperature of the quiet Sun outside the coronal hole measured at several different radio wavelengths. This radio spectrum can be used to obtain the changes of the quiet Sun atmosphere inside coronal holes and also as an additional check for coronal hole profiles obtained by other methods. Using a standard solar atmosphere and a computer program which included ray tracing, we have tried to reproduce the observed radio spectrum by computing brightness temperatures at many different wavelengths for a long series of modifications in the electron density, neutral particle density and temperature profiles of the standard solar atmosphere. This analysis indicates that inside an average coronal hole the following changes occur: the upper chromosphere expands by about 20% and its electron density and temperature decrease by about 10%. The transition zone experiences the largest change, expanding by a factor of about 6, its electron density decreases by a similar factor, and its temperature decreases by about 50%. Finally in the corona the electron density decreases by about 20% and the temperature by about 15%.  相似文献   

6.
Characterizing and navigating small bodies with imaging data   总被引:1,自引:0,他引:1  
Abstract— Recent advances in the characterization of small body surfaces with stereophotoclinometry are discussed. The principal data output is an ensemble of landmark maps (L‐maps), high‐resolution topography/albedo maps of varying resolution that tile the surface of the body. Because they can have a resolution comparable to the best images, and can be located on a global reference frame to high accuracy, L‐maps provide a significant improvement in discriminatory power for studies of small bodies, ranging from regolith processes to interior structure. These techniques are now being used to map larger bodies such as the Moon and Mercury. L‐maps are combined to produce a standard global topography model (GTM) with about 1.57 million vectors and having a wide variety of applications. They can also be combined to produce high‐resolution topography maps that describe local areas with much greater detail than the GTM. When combined with nominal predictions from other data sources and available data from other instruments such as LIDAR or RADAR, solutions for the spacecraft position and camera pointing are the most accurate available. Examples are drawn from studies of Phobos, Eros, and Itokawa, including surface characterization, gravity analysis, spacecraft navigation, and incorporation of LIDAR or RADAR data. This work has important implications for potential future missions such as Deep Interior and the level of navigation and science that can be achieved.  相似文献   

7.
Analyses of the cosmic microwave background (CMB) radiation maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not predicted by the standard cosmological theory. It has been suggested that a dust cloud in the vicinity of the Solar system may be the cause for these anomalies. In this paper, the thermal emission by particles from two known interplanetary meteoroid complexes is tested against the CMB maps. Conclusions are drawn based on the geometry of cloud projections onto the WMAP sky whether these clouds are likely to explain the observed anomaly. The smooth background Zodiacal cloud and one of the Taurid meteor complex branches do not explain the WMAP anomaly.  相似文献   

8.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

9.
《New Astronomy Reviews》2002,46(2-7):387-391
We have applied an effective numerical scheme for cosmic-ray transport to 3D MHD simulations of jet flow in radio galaxies (see the companion paper by Jones et al. herein). The marriage of relativistic particle and 3D magnetic field information allows us to construct a rich set of ‘synthetic observations’ of our simulated objects. The information is sufficient to calculate the ‘true’ synchrotron emissivity at a given frequency using explicit information about the relativistic electrons. This enables us to produce synchrotron surface-brightness maps, including polarization. Inverse-Compton X-ray surface-brightness maps may also be produced. First results intended to explore the connection between jet dynamics and electron transport in radio lobes are discussed. We infer lobe magnetic field values by comparison of synthetically observed X-ray and synchrotron fluxes, and find these ‘inverse-Compton’ fields to be quite consistent with the actual RMS field averaged over the lobe. The simplest minimum energy calculation from the synthetic observations also seems to agree with the actual simulated source properties.  相似文献   

10.
Different methods are proposed and tested for transforming a nonlinear differential system, and more particularly a hamiltonian one, into a map without having to integrate the whole orbit as in the well known Poincaré map technique. We construct piecewise polynomial maps by coarse-graining the phase surface of section into parallelograms using values of the Poincaré maps at the vertices to define a polynomial approximation within each cell. The numerical experiments are in good agreement with the standard map taken as a model problem. The agreement is better when the number of vertices and the order of the polynomial fit increase. The synthetic mapping obtained is not symplectic even if at vertices there is an exact interpolation. We introduce a second new method based on a global fitting . The polynomials are obtained using at once all the vertices and fitting by least square polynomes but in such a way that the symplectic character is not lost.  相似文献   

11.
The definition of particle states in various accelerated frames is considered. It is shown that in any realistically accelerated system, quantum field theory can be formulated without any ambiguity. We further show that the definition of a particle based on Green's function techniques does not always agree with the definition based on explicit quantization. We analyse the standard accelerated detector results from this point of view and show that the uncertainty principle imposes a rigorous bound on these detection processes.  相似文献   

12.
    
Different methods are proposed and tested for transforming a nonlinear differential system, and more particularly a hamiltonian one, into a map without having to integrate the whole orbit as in the well known Poincaré map technique. We construct piecewise polynomial maps by coarse-graining the phase surface of section into parallelograms using values of the Poincaré maps at the vertices to define a polynomial approximation within each cell. The numerical experiments are in good agreement with the standard map taken as a model problem. The agreement is better when the number of vertices and the order of the polynomial fit increase. The synthetic mapping obtained is not symplectic even if at vertices there is an exact interpolation. We introduce a second new method based on a global fitting . The polynomials are obtained using at once all the vertices and fitting by least square polynomes but in such a way that the symplectic character is not lost.  相似文献   

13.
We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon–Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.  相似文献   

14.
In this work we address the problem of simultaneous multifrequency detection of extragalactic point sources in the maps of the cosmic microwave background. We apply a new linear filtering technique, the 'matched matrix filters', that incorporates full spatial information, including the cross-correlation among channels, without making any a priori assumption about the spectral behaviour of the sources. A substantial reduction of the background is achieved thanks to the optimal combination of filtered maps. We describe the new technique in detail and apply it to the detection of radio sources and estimation of their parameters in realistic all-sky Planck simulations at 30, 44, 70 and 100 GHz. Then, we compare the results with the single-frequency approach based on the standard matched filter, in terms of reliability, completeness and flux accuracy of the resulting point source catalogues. The new filters outperform the standard matched filters for all these indexes at 30, 44 and 70 GHz, whereas at 100 GHz both kinds of filters have a similar performance. We find a notable increment of the number of true detections for a fixed reliability level. In particular, for a 95 per cent reliability we practically double the number of detections at 30, 44 and 70 GHz.  相似文献   

15.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   

16.
We investigate the use of wavelet transforms in detecting and characterizing non-Gaussian structure in maps of the cosmic microwave background (CMB). We apply the method to simulated maps of the KaiserStebbins effect resulting from cosmic strings, on to which Gaussian signals of varying amplitudes are superposed. We find that the method significantly outperforms standard techniques based on measuring the moments of the pixel temperature distribution. We also compare the results with those obtained using techniques based on Minkowski functionals, and we again find the wavelet method to be superior. In particular, using the wavelet technique, we find that it is possible to detect non-Gaussianity even in the presence of a superposed Gaussian signal with 3 times the rms amplitude of the original cosmic string map. We also find that the wavelet technique is useful in characterizing the angular scales at which the non-Gaussian signal occurs.  相似文献   

17.
文中从中微子物理学、太阳中微子的探测、标准太阳模型的建立等方面对太阳中微子问题的提出进行了回顾。各为太阳中微子探测器测量结果不同程度的偏低,以及不同类探测器测量结果之间的矛盾,使得人们对太阳中微子的研究表现出浓厚的兴趣。对太阳中微子问题可从粒子物理和天体物理两个方面进行研究。文中分别对这两个研究领域中提取的企图解决太阳中微子问题的模型作了简要评述。  相似文献   

18.
Time evolution of the interplanetary dust particle under the action of the solar electromagnetic radiation (Poynting-Robertson effect) is investigated. Evolution of the initially circular orbit in terms of the orbital elements present in the standard equations for their secular changes is considered. It is pointed out that the osculating eccentricity is practically constant during the motion in spite of generally accepted opinion that the standard equations for the secular changes of orbital elements represent time evolution of the osculating elements.  相似文献   

19.
The orbital motion of the Sun has been linked with solar variability, but the underlying physics remains unknown. A coupling of the solar axial rotation and the barycentric orbital revolution might account for the relationships found. Some recent published studies addressing the physics of this problem have made use of equations from rotational physics in order to model particle motions. However, our standard equations for rotational velocity do not accurately describe particle motions due to orbital revolution. The Sun's orbital motion is a state of free fall; in consequence, aside from very small tidal motions, the associated particle velocities do not vary as a function of position on or within the body of the Sun. In this note, I describe and illustrate the fundamental difference between particle motions in rotation and revolution, in order to dispel some part of the confusion that has arisen in the past and that which may yet arise in the future. This discussion highlights the principal physical difficulty that must be addressed and overcome by future dynamical spin–orbit coupling hypotheses.  相似文献   

20.
Numerical orbit integrations have been conducted to characterize the types of trajectories in the one-dimensional Newtonian three-body problem with equal masses and negative energy. Essentially three different types of motions were found to exist. They may be classified according to the duration of the bound three-body state. There are zero-lifetime predictable trajectories, finite lifetime apparently chaotic orbits, and infinite lifetime quasi-periodic motions. The quasi-periodic orbits are confined to the neighbourhood of Schubart's stable periodic orbit. For all other trajectories the final state is of the type binary + single particle in both directions of time. The boundaries of the different orbit-type regions seem to be sharp. We present statistical results for the binding energies and for the duration of the bound three-body state. Properties of individual orbits are also summarized in the form of various graphical maps in a two-dimensional grid of parameters defining the orbit. Supported by the Academy of Finland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号