首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sediment transport parameter helps determining the amount of sediment transport in cross-shore direction. The sediment transport parameter therefore, should represent the effect of necessary environmental factors involved in cross-shore beach profile formation. However, all the previous studies carried out for defining shape parameter consider the parameter as a calibration value. The aim of this study is to add the effect of wave climate and grain size characteristics in the definition of transport rate parameter and thus witness their influence on the parameter. This is achieved by taking the difference in between “the equilibrium wave energy dissipation rate” and “the wave energy dissipation rate” to generate a definition for the bulk of sediment, dislocating within a given time interval until the beach tends reach an equilibrium conditions. The result yields that empirical definition of transport rate parameter primarily governs the time response of the beach profile. Smaller transport rate value gives a longer elapsed time before equilibrium is attained on the beach profile. It is shown that any significant change in sediment diameter or wave climate proportionally increases the value of the shape parameter. However, the effect of change in wave height or period on sediment transport parameter is not as credit to as mean sediment characteristics.  相似文献   

2.
The accuracy of predicting wave transformation in the nearshore is very important to wave hydrodynamics, sediment transport and design of coastal structures. An efficient numerical model based on the time-dependent mild-slope equation is presented in this paper for the estimation of wave deformation across the surf zone. This model incorporates an approximate nonlinear shoaling formula and an energy dissipation factor due to wave breaking to improve the accuracy of the calculation of wave height deformation prior to wave breaking and also in the surf zone. The model also computes the location of first wave breaking, wave recovery and second wave breaking, if physical condition permits. Good agreement is found upon comparison with experimental data over several one-dimensional beach profiles, including uniform slope, bar and step profiles.  相似文献   

3.
4.
《Coastal Engineering》2004,50(3):97-115
A new probability density function (pdf) for the transformation of depth-limited wave height distributions is presented. Assuming the bore approach for modeling the energy dissipation in the inner surf zone to be valid, an analytical expression for the transformation of wave height distribution including shoaling and breaking on a planar beach is obtained. The resulting expression for the pdf is formulated with a single function and only one shape parameter, which is calibrated as a function of the local root-mean-square (rms) wave height-to-water depth ratio and the local Iribarren number. The transformed pdf is able to reproduce the shape of field and laboratory measured wave height histograms and the sharp change in the shape of the wave height distribution in depth-limited breaking conditions for low exceedance probability. Results show that the theory is appropriate to represent wave height distribution transformation over shallow foreshores or in the surf zone. Alternatively, a combination of the new model with existing state-of-the-art wave energy propagation models allows the complete definition of the wave height distribution transformation on a planar beach.  相似文献   

5.
This study focuses on barred beach shoreface nourishments physically simulated in a wave flume. The attack of a schematic storm on three different nourishments is analysed. The apex and waning storm phases lead respectively to offshore and onshore sediment transports. Nourishments in the trough and on the outer bar feed the bar and increase wave dissipation offshore. The bar acts as a wave filter and reduces shore erosion (lee effect). In contrast, nourishment on the beach face leads mostly to shore feeding and reconstruction (feeder effect). With successive nourishments, the beach face clearly becomes steeper and onshore sediment transport is reduced during moderate wave climates. The surface grain size analysis reveals marked variations. Coarser sediments are sorted on the bar and the upper beach face. These locations correspond to large wave dissipation zones during the storm apex.  相似文献   

6.
《Coastal Engineering》2005,52(9):727-744
The idea of an equilibrium beach profile has been a useful concept in both theoretical and practical coastal engineering studies. In essence, the subject has thus far evolved to a choice of shape functions, which are described by a small set of parameters. Additional efforts have attempted to relate these parameters to more fundamental quantities, such as average grain size of the bottom sediment, wave environment, geometric aspects of the beach, and the like. This approach has a long history and can rightly claim a certain level of success. However, the usual collections of shape functions are well-known to have difficulties very near the shoreline, let alone on the nearshore portion of the beach. This study extends the equilibrium profile up to and somewhat past the shoreline. Three shape functions are used in conjunction with a Taylor expansion for the nearshore and above water portions of the profile. A nonlinear fitting technique is applied to estimate the model's best parameter values. Moreover, reduced versions of the proposed models can be employed for prediction based only on parameters related to sediment characteristics or wave conditions and geometry of the visible beach. The approach is compared with data from the East Coast of Australia, the East Coast of North America and the South Shore of the Mediterranean Sea.  相似文献   

7.
This paper is devoted to the analysis of the hydrodynamic equilibrium of a headland or semi-elliptic shaped beach. It is shown that the state of equilibrium depends not only on the in- and outgoing sediment but also on the accommodation of the sediment within the embayment. The shape and relative depth of shoals, or settling zones, also directly affect the wave and current patterns inside the bay, within which the resultant breaker line almost stops wave-induced currents at some locations, whereas the magnitude of current increases at other locations. Several numerical tests are analytically conducted in a semi-elliptic beach with two symmetrical shoals of varying relative depth where circulatory current systems are detected and analyzed. Numerical modelling for wave climate and wave-induced current estimation is also presented in order to corroborate results and provide a tool for complicated and/or physical domains. The results lead to a redefinition of the concept of equilibrium for headland-bay beaches taking into account not only the net sediment transport but also the role of the formation and disappearance of settling zones, as well as sediment interchanges between the beach and shoals.  相似文献   

8.
探索珊瑚礁与海滩地貌之间动力地貌联系是认识珊瑚礁海岸变化的重要一环.本文以雷州半岛徐闻西落港珊瑚礁海岸为研究对象,应用RTK-GPS和无人船开展岸滩剖面和近岸水下地形的测量、结合海滩沉积物分析,基于FUNWAVE-TVD数值模型模拟并分析不同珊瑚礁地形地貌条件下波浪动力传播过程.结果显示,研究区珊瑚礁水下地形是影响礁后...  相似文献   

9.
《Coastal Engineering》2005,52(6):535-563
The development, application and behaviour of a generic model of retreating soft rock (e.g. clay) shores is described. This represents a broad system, in coastal modelling terms, comprising shore platform, beach, tidal range, wave transformation, cliff and talus. The coast is divided into a series of representative cross-shore profiles, each of which is discretised into a column of elements. Erosion of a platform element at each timestep depends on its gradient. Material strength is dealt with as a calibration constant, wave forces are averaged over durations of a tide or hour and sediment transport is represented in bulk terms. Attention has been focussed on interaction between system parts and the emergence of system properties, in particular profile shape. This is allowed to develop towards dynamic equilibrium and is the principal means of model validation. The emergence of the profile shape is dominated by the distribution of wave scour by the tide and by interaction with a beach, if present. Because the model is process-based, it may be used to model the effects of climate change and engineering intervention. Yet it is also computationally inexpensive, so may be used to explore uncertainty through probabilistic application. The breadth of the included system, coupled with short run-times, enables predictions over timescales of decades, which we refer to as the Mesoscale. The model is used to explore the dynamics of retreating soft rock shore profiles and to predict future behaviour of a study site.  相似文献   

10.
通过物理模型实验研究了海岸沙坝剖面和滩肩剖面的形成和演化过程,给出了稳定的沙坝剖面和滩肩剖面的几何特征。实验中考虑了两种初始坡度(1∶20和1∶10)和不同波高的规则波和不规则波,讨论了不同初始坡度海岸上破碎波空间分布特征。结果表明,沙坝产生后存在向岸和离岸两种运动形态,但最终将停留在稳定位置。稳定的沙坝剖面对应不同初始坡度和波浪存在不同的大沙坝和小沙坝分布。沙坝剖面由长时间小波高波浪序列作用后可转化为稳定滩肩剖面,该剖面不依赖于波浪和初始坡度。实验也给出了平衡剖面与理论曲线的对比以及剖面上泥沙粒径的分布。  相似文献   

11.
《Ocean Engineering》2004,31(11-12):1351-1375
Sorting of sediment on a beach under wave action takes several forms. Stratified layers of finer and coarser sediment, which depend on wave climate, grain size and beach slope are formed. This complex problem can be simplified by defining the cross-shore and longshore sorting according to the angle between the breaking wave and the coast. In the present study, longshore distribution of sediment as well as corresponding beach profiles was measured in a wave basin. Three-dimensional hydraulic model experiments were performed with regular waves. Eighteen sets of experiments performed in longshore sorting mechanism using two different sand beds. The sorting of the bed material and the formation of armour coats along the beach were defined by grain size distributions and dimensionless parameters for sandy beaches.The rate of sediment transport with grain size sorting was measured in a wave basin. A method introduced sorting process was presented in this study. The sediment rate based on sorting mechanism was also discussed with known methods. It has been found that the non-uniformity of the grain size and hence sorting of the beaches play a very important role in the sand transport due to wave motion in a similar way to the case of steady flow in alluvial channels.  相似文献   

12.
本研究基于第三代海浪模式SWAN(Simulating Wave Nearshore),对茅尾海及其邻近海域波浪场进行了为期la的数值模拟,利用实测资料验证了该模型的可靠性.根据模型计算结果分析了茅尾海海域波浪要素的时空分布特征,在此基础上进一步探讨了波浪能量的输入耗散过程以及海滩修复对波浪能量空间分布的影响.研究发现...  相似文献   

13.
The beach profile and sediment transport are very important factors in the design of coastal structures, and the beach profile is mainly affected by a number of parameters, such as wave height and period, beach slope, and the material properties of the bed. In this study, considering wave height (H0=6.5, 11.5, 16, 20, 23, 26 and 30 cm), wave period (T=1.46 and 2.03 s), beach slope (m=1/10 and 1/15) and mean sediment diameter (d50=0.18, 0.26, 0.33 and 0.40 mm), an experimental investigation of coastal erosion profile (storm profile) was carried out in a wave flume using regular waves, and geometric characteristics of erosion profile were determined by the resultant erosion profile. Dimensional and non-dimensional equations were obtained by using linear and non-linear regression methods through the experimental data and were compared with previously developed equations in the literature. The results have shown that the experimental data fitted well to the proposed equations with respect to the previously developed equations.  相似文献   

14.
New large-scale laboratory data are presented on the influence of long waves, bichromatic wave groups and random waves on sediment transport in the surf and swash zones. Physical model testing was performed in the large-scale CIEM wave flume at UPC, Barcelona, as part of the SUSCO (swash zone response under grouping storm conditions) experiment in the Hydralab III program (Vicinanza et al., 2010). Fourteen different wave conditions were used, encompassing monochromatic waves, bichromatic wave groups and random waves. The experiments were designed specifically to compare variations in beach profile evolution between monochromatic waves and unsteady waves with the same mean energy flux. Each test commenced with approximately the same initial profile. The monochromatic conditions were perturbed with free long waves, and then subsequently substituted with bichromatic wave groups with different bandwidth and with random waves with varying groupiness. Beach profile measurements were made at half-hourly and hourly intervals, from which net cross-shore transport rates were calculated for the different wave conditions. Pairs of experiments with slightly different bandwidth or wave grouping show very similar net cross-shore sediment transport patterns, giving high confidence to the data set. Consistent with recent small-scale experiments, the data clearly show that in comparison to monochromatic conditions the bichromatic wave groups reduce onshore transport during accretive conditions and increase offshore transport during erosive conditions. The random waves have a similar influence to the bichromatic wave groups, promoting offshore transport, in comparison to the monochromatic conditions. The data also indicate that the free long waves promote onshore transport, but the conclusions are more tentative as a result of a few errors in the test schedule and modifications to the setup which reduced testing time. The experiments suggest that the inclusion of long wave and wave group sediment transport is important for improved near-shore morphological modeling of cross-shore beach profile evolution, and they provide a very comprehensive and controlled series of tests for evaluating numerical models. It is suggested that the large change in the beach response between monochromatic conditions and wave group conditions is a result of the increased significant and maximum wave heights in the wave groups, as much as the presence of the forced and free long waves induced by the groupiness. The equilibrium state model concept can provide a heuristic explanation of the influence of the wave groups on the bulk beach profile response if their effective relative fall velocity is larger than that of monochromatic waves with the same incident energy flux.  相似文献   

15.
Based on the time-dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation. The wave height of regular and irregular waves is numerically simulated by use of the parabolic mild slope equation considering the energy dissipation due to wave breaking. Comparison of numerical results with experimental data shows that the expression for the energy dissipation factor is reasonable. The effects of the wave breaking coefficient on the breaking point and the distribution of wave height after breaking are discussed through the study of a specific experimental topography.  相似文献   

16.
《Coastal Engineering》2002,47(1):53-75
The mechanism responsible for the ubiquitous presence of convex beach profiles and shoreward migration of linear bars is examined using numerical circulation and sediment transport models. The models are validated against laboratory measurements and observed natural beach cross-sections. While not discounting the importance of infragravity and advective horizontal circulation or bed-return flow mechanisms, a robust diffusive process explains the convex profile shape and bar formation. In the presence of concentration gradients across the surf zone, a diffusive sediment flux from high to low concentration results in the transfer of sediment outwards from the breakpoint, both onshore and offshore, and the subsequent formation of a “diffusion bar” and “diffusion profile”. The profiles are characterised by single- and double-convex dome-like shapes, developing during shoreward migration of the bars by the diffusion mechanism. The mechanism explains several phenomena observed on natural beaches, including (i) convex beach profiles; (ii) shoreward migration of the bar with concomitant beach accretion under narrow-band swell; (iii) reduced propensity for bar formation on low-gradient, fine-sand beaches or under wide-band wave spectra (even though multiple bars are common on some low-gradient beaches) and (iv) offshore migration of the bar during periods of increasing wave height. The diffusion mechanism can be dependent on orbital motion alone and, as such, requires no frequency selection or strong correlation between multiple processes for bar formation.  相似文献   

17.
《Coastal Engineering》1999,36(1):59-85
Simple theoretical models to determine the equilibrium profile shape under breaking and non-breaking waves are presented. For the case of breaking waves, it is assumed that the seaward transport in the undertow is locally balanced by a net vertical sedimentation, so that no bottom changes occur at equilibrium. The parameterization of the water and sediment flux in the surf zone yields a power curve for the equilibrium profile with a power of 2/3, which is in agreement with previous field investigations on surf zone profile shapes. Three different models were developed to derive the profile shape under non-breaking waves, namely (1) a variational formulation where the wave energy dissipation in the bottom boundary layer is minimized over the part of the profile affected by non-breaking waves, (2) an integration of a small-scale sediment transport formula over a wave period where the slope conditions that yield zero net transport determine equilibrium, and (3) a conceptual formulation of mechanisms for onshore and offshore sediment transport where a balance between the mechanisms defines equilibrium conditions. All three models produced equilibrium profile shapes of power-type with the power typically in the range 0.15–0.30. Comparison with field data supported the results obtained indicating different powers for the equilibrium profile shape under breaking and non-breaking waves.  相似文献   

18.
Natural beaches tend to exhibit an equilibrium profile that is planar nearshore and nonplanar, concave-up offshore. The longshore current on this type of beach profile depends on the horizontal distance to the location of the intersection between the planar and nonplanar profiles. As the width of the planar beach face decreases, the location of the maximum longshore current moves closer to the shore. The dependency of the corresponding longshore sediment transport rate on the location of the intersection between the two profiles is demonstrated for two energetics-based sediment transport models. Again, a narrower beach face results in the maximum sediment transport being closer to the shore. Total sediment transport rates are also a function of the planar beach face width. This suggests that longshore transport rates are modulated by the tidal elevation.  相似文献   

19.
This paper presents a comprehensive review on the interaction between hydrodynamic processes, beach morphology and sedimentology at large scale coastal behaviour along the coastline of Santa Catarina, between Laguna and São Francisco Island, a microtidal east coast swell environment with headland and bay geomorphologies. The parabolic bay shape equation has proven to be a convenient and practical tool for studying the stability of the headland-bay beaches, tombolos, and salients in Santa Catarina. The beaches exhibit different patterns of sediment removal as a function of the degree of beach curvature. In highly curved beaches, there is a well-developed shadow zone and a range of morphodynamic conditions, from a sheltered low-energy beach adjacent to the downdrift headland to a high-energy exposed beach on the straight end of the headland-bay beach. The less curved beaches instead, tend to show more uniform behaviour since they are directly exposed to incident waves. There is no obvious relationship between average wave height and mean grain size, showing the importance of sediment source to characterize the sedimentary distribution patterns in the study area. The analysis of beaches showed that beach morphodynamics and sequence profiles for a bay–headland coast in a microtidal east coast environment is a function of geological inheritance (e.g., distance between headlands and orientation, nearshore and inner shelf morphology, coastal plain morphology, and sediment source), and hydrodynamic factors (wave conditions, oceanic wave exposure and relative tidal range).  相似文献   

20.
The cross-shore profile and the textural distribution of foreshore sediments of Ganpatipule beach along Maharashtra coast covering two annual cycles are examined. Ganpatipule beach depicts erosion and accretion of the berm, reduction and widening of foreshore widths during the monsoon (June–September) and post-monsoon (October–May), respectively with net sediment accretion during the study period due to the changes in the wave characteristics. A direct correlation is observed between the median sediment grain size and beach-face slopes signifying high wave energy ensuing to a gentle to very gentle slope. The sediments are mainly medium grain size, moderately well sorted, bimodal, very fine skewed to very coarse skewed and very platykurtic to very leptokurtic in nature. The binary plots of the textural parameters (mean, skewness, kurtosis, and standard deviation) depicted a characteristic beach environment of deposition. The study shows that the sediment is concentrated in the environment of rolling and bottom suspension. The study on grain size distribution of sediments could be used to assess the wave energy condition prevailing along the coastal area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号