首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The normal mode method is adopted to decompose the differences between simulations with SST(seasurface temperature)anomahes over centra-eastern Pacific and normal SST by use of a nine-layer global spec-tral model in order to investigate short-range climatic oscillation with various time scales forced by ElNino during the northern summer.Investigation shows that El Nino may have the following influence onatmosphere on various space-time scales.Extra-long wave components of Rossby mode forced by convectiveanomaly over equatorial western Pacific resulting from El Nino produce climatic oscillation on monthly(sea-sonal)time scale in middle-high latitudes of Southern and Northern Hemispheres;extra-long wave componentsof Kelvin mode forced by SST anomalies propagate along the equator,resulting in 30—60 day oscillation oftropical and subtropical atmosphere;and its long waves move eastward with westerly,resulting in quasi-biweekoscillation.  相似文献   

2.
The characteristics of 30-60 day oscillation (hereafter called LFO ) of the outgoing longwave radiation data (OLR) and its relations to the interannual oscillations of the sea surface temperature (SST) are investigated by using the daily OLR data for the period from January, 1979 to December, 1987 and the corresponding monthly SST data. It is found that the LFO the band the interannual oscillations of the SST monthly anomaly (SSTA) interact each other and they all relate to the occurrence and development of El Nino events closely. Before El Nino event happens, it contributes to the SST's wanning up and to the SST's quasi-biennial oscillation (called QBO for brevity) and three and half years oscillation (called SO for short) being in warm water phase in the equatorial central and eastern Pacific (ECP and EEP) that the LFO in the equatorial western Pacific (EWP) enhances and propagates eastward; When El Nino event takes place, the LFO, SSTA and SSTA's QBO and SO in the EEP interact and strengthen each oth  相似文献   

3.
The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.  相似文献   

4.
The characteristics of 30-60 day oscillation (hereafter called LFO ) of the outgoing longwave radiation data (OLR) and its relations to the interannual oscillations of the sea surface temperature (SST) are investigated by using the daily OLR data for the period from January, 1979 to December, 1987 and the corresponding monthly SST data. II is found that the LFO the band the interannual oscillations of the SST monthly anomaly (SSTA) interact each oth-er and they all relate to the occurrence and development of El Nino events closely. Before El Nino event happens, it contributes to the SST’s warming up and to the SST’s quasi-biennial oscillation (called QBO for brevity) and three and half years oscillation (called SO for short) being in warm water phase in the equatorial central and eastern Pacific (ECP and EEP) that the LFO in the equatorial western Pacific (EWP) enhances and propagates eastward; When El Nino event takes place, the LFO, SSTA and SSTA’s QBO and SO in the EEP interact and strengthen each other; But the warmer SST and the SSTA’s QBO and SO in the warm water phase in the EEP contribute to the LFO's weak-ening in the equatorial Pacific. Moreover, these contribute to the SST in the EEP becoming cold and the SSTA’s QBO and SO in the EWP being in cold water phase and then impel the El Nino event to end.  相似文献   

5.
By use of daily OLR data of eight years (1975—1977,1979—1983),the propagation features of 30—60day low-frequency oscillation (LFO) and its teleconnections are studied.The results are as follows:(1)The LFO is quite active in the regions of the South China Sea,mainland of China and subtrop-ical western-North-Pacific.(2)The zonal propagation direction of LFO is eastward along the equator and gradually changes towestward north of 10°N and south of 10°S.The westward propagation of LFO dominates in the areaof 15°N-30°N,Eastern Hemisphere.(3)In the region of east Asia (120°E),the main meridional directions are northward in tropics andsouthward in high latitudes.These two opposite propagating LFO are merged in the vicinity of subtropics.Sometimes,the northward propagating LFO can penetrate through the subtropics to high latitudes and viceversa.On the average,the northward propagation dominates in summer time.(4)The EOF analysis of the summer data shows that there are two main eiginvector centers of OLR-LFO,one is located over the Bay of Bengal and the other over the tropical western-North-Pacific.Thesign of these two centers are just opposite to each other.It should be noted that on the normal,thesetwo oscillation centers mentioned above coincide with the two strong centers of atmospheric 12eat source insummer.It means that the activities of LFO in the Indian monsoon system and the East Asian monsoonsystem are reverse.For the first component of eiginvector,a belt of LFO with the same sign stretcheswith a SW-NE direction from the tropical center in the western-North-Pacific northwestward,passing bythe point at 15°N,180°E and reaches southwestern states of the United States.To the north and southof this belt,there are other two belts with opposite sign.Again further north and south of them,there areother two belts with the same sign as the first one.Furthermore,to the NW (near Taiwan) and SE (10°S,160°W) of the tropical East Asian center,there is,respectively,another center with opposite sign.Analmost straight line can go through all three centers.The main characteristics of the second,third andfourth components of eiginvector are the same as that of the first one.It indicates that the teleconnectioncentered around the tropical East Asian center of LFO is characterized by a SW-NE oriented wave frontand the energy transport of oscillation from SE to NW.That is to say,the oscillations in the tropicalwestern-North-Pacific may be the source of those in China during summer.We call this teleconnection pat-tern the WPC (western Pacific-China) pattern so as to distinguish from the PNA pattern.  相似文献   

6.
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino.  相似文献   

7.
The time series of sea surface temperature(SST), sea level pressure (SLP), zonal wind (U) and total cloudiness (CA), for the period of 1950-1979, over a 8°×8° grid-point latitudinal belt between 32° S and 32°N are made from COADS (Comprehensive Ocean-Atmosphere Data Set). The time harmonic analysis and power spectra analysis show that there exist quasi-biennial oscillation (QBO), three and half years oscillation (SO), five and half years oscillation (FYO) and eleven years oscillation (EYO) in these time series. The main propagation characteristics of these interannual low-frequency oscillations are as follows:(1) The variance analysis of SST shows that there is an active region of QBO and SO (with maximum variance), coming from the southwestern part of the subtropical Pacific, stretching eastward up to the west coast of South America, and then northward to the eastern equatorial Pacific. The QBO and SO disturbances of SST follow the same route and cause the anomaly of SST (El Nino and period of col  相似文献   

8.
Three kinds of typhoons with distinct tracks are sorted based on a set of typhoon data from 1958 to 1998. The results of composite analyses confirm that different typhoon tracks correspond to different patterns of the subtropical anticyclone over the western Pacific (SAWP). When the tracks are westward, the SAWP is strong, with a zonal form, and stretches westward; when the tracks are recurving, the main body of the SAWP shifts eastward and breaks near 160~E; and when the tracks are northward, the SAWP is located far east of its normal position. Based on the above result, two different initial fields are configured, one has a zonal and strong SAWP, and the other has a meridional and weak SAWP. By using the GOALS R42L9 climate model, a temperature disturbance is added into these two different initial fields to force the formation of a typhoon. Westward and northward tracked typhoons are well simulated, thus verifying that different patterns of the SAWP have different effects on typhoon tracks. Results also show that typhoons can induce barotropic Rossby waves propagating to the mid and high latitudes. Under different background zonal flows, the wave trains triggered by the typhoons of westward and northward tracks are also different, and their effects on the mid and high latitude circulations and the SAWP are different. Compared to a n.orthward tracked typhoon, a westward tracked typhoon is able to induce positive geopotential height anomaly to its north and northwest, resulting in the SAWP strengthening and developing westward.  相似文献   

9.
Boreal wintertime extratropical circulation is studied in relation to the tropical convection during the 1982/83 El Nino and 1988/89 La Nina. The anomaly structure of 1982/83 and 1988/89 over the extratropics reveals remarkably different features as the longitudinal tropical forcing region changes. The Rossby wave source (Positive) shows the largest maximum over East Asia in both years due to the persistent heating from the western Pacific warm pool area. However, the sink term shows contrasting features over the subtropics and extratropics between the two years. In the El Nino year, enhanced tropical convection over the eastern Pacific produces the Rossby wave sink at 10?N and shifted eastward over the North Pacific, while in the La Nina year, the sink area is shifted westward over the North Pacific. The contrasting features between the two events in mean-eddy interaction appears especially over the downstream area of the East Asian Jet. The extension (retraction) of the meanflow eastward (westward) to  相似文献   

10.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Nina) to a warm water state (El Nino) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980-2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Nino (or La Nina) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Nino and La Nina events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16°N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Nino event to a La Nina event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Nino or La Nina event at least one year in advance.  相似文献   

11.
Based on the linear planetary wave theory and observed data,the teleconnections between El Nino andatmospheric circulation in the Northern Hemisphere(NH)are studied.It is shown that the zonal groupvelocity for stationary Rossby waves in the atmosphere is always positive.Thus,the energy of thesedisturbances can not propagate westward.In certain conditions,however,the westward propagation ofnonstationary waves is possible.Going further into this question,we prove that the low-frequency distur-bances over the eastern equatorial Pacific,which are closely related to the large-scale air-sea interactionin low-latitudes,can influence the extratropical atmospheric circulation in the NH along two typical energypaths;i.e.,the waves with wavenumber one(n=1)propagate through the western North Pacific into EastAsia and form the“East Asian Path”,which plays an important part in the teleconnections between ElNino and atmospheric anomalies over East Asia,besides,the waves with n≥2 propagate along the“PNAPath”into the middle and eastern North Pacific as well as North America,leading to the relevant atmos-pheric anomalies to be excited over there.  相似文献   

12.
The boreal summer intraseasonal oscillation(BSISO) is simulated by the Climate System Model(CSM) developed at the Chinese Academy of Meteorological Sciences(CAMS), China Meteorological Administration. Firstly, the results indicate that this new model is able to reasonably simulate the annual cycle and seasonal mean of the precipitation, as well as the vertical shear of large-scale zonal wind in the tropics. The model also reproduces the eastward and northward propagating oscillation signals similar to those found in observations. The simulation of BSISO is generally in agreement with the observations in terms of variance center, periodicity, and propagation, with the exception that the magnitude of BSISO anomalous convections are underestimated during both its eastward propagation along the equator and its northward propagation over the Asian–Pacific summer monsoon region. Our preliminary evaluation of the simulated BSISO by CAMS-CSM suggests that this new model has the capability, to a certain extent, to capture the BSISO features, including its propagation zonally along the equator and meridionally over the Asian monsoon region.  相似文献   

13.
In this paper, five-year simulated data from a low-resolution global spectral model with triangular trunca-lion at wavenumber 10 are analyzed in order to study dynamical features and propagation characteristics ofintraseasonal oxillations over the mid-latitudes and the tropical atmosphere. The simulations show that thereis the 30-50 day periodic oscillation in the low-resolution spectral model without non-seasonal external forcing,and spatial scale of the intraseasonal oscihations is of the globe .Further analysis finds that propagation charac-ters of intraseasonal oscillations over the mid-latitudes and the tropics are different. The 30-50 day oscillationover the tropics exhibits structure of the velocity potential wave with wavenumber 1 in the latitudinal and thecharacter of the traveling wave eastward at speed of 8 longitudes/day. However, the 30-50 day oscillationsin mid-latitude atmosphere exhibit phase and amplitude oscillation of the standing planetary waves and theyare related to transform of teleconnection patterns over the mid-latitudes. The energy is not only transferredbetween the tropics and the middle-high latitudes, but also between different regions over the tropics. Based on the analysis of 5-year band pass filtered data from a 5-layer global spectral model of Jow-ordetwith truncated wavenumber l0,investigation is done of the source of intraseasonal oscillations in the extratropicalmodel atmosphere and its mechanism. Results show that (1) the convective heat transferred eastward alongthe equator serves as the source of the intraseasonal oxillation both in the tropical and the extratropical atmos--phere; (2) the velocity-potential wave of a zonal structure of wavenumber 1 gives rise to oxillation in divergentand convergent wind fields of a dipole-form as seen from the equatorial Indian Ocean to the western Pacificduring its eastward propagation, thus indicating the oscillation in the dipole-form heat soure:e/sink pattertl; (3)the tropical heat-source oscillation is responsible for the variation in phase and intensity of the extratropicalstationary wave train, and the interaction between the oscillating low-frequency inertial gravity and stationaryRossby modes that are probably mechanisms for the oscillations ip the middle-high latitudes.  相似文献   

14.
Complex Singular Value Decomposition(CSVD)analysis technique was applied to study theQuasi Four year Oscillation(QFO)of air sea interaction and its coupled pattern evolution duringdifferent phases.Results show that:(1)CSVD method can better reveal phase relation betweentwo physical fields:(2)Not only northerly anomalies from Northern Hemisphere but alsosoutherly anomalies from Southern Hemisphere contribute to EI Nino.They converge in westernequatorial Pacific,leading to outburst of strong equatorial westerly anomalies,and result in strongEl Nino event onset:(3)An abnormal subtropical anticyclone circulation appears overnorthwestern Pacific while El Nino developing.It favors transitions from the warm SST(EINino)to the cold SST(La Nina),just as the tropical westerly anomalies produced by abnormalcyclone during a decaying La Nina.which encourage the development of El Nino:(4)Thewesterly anomalies in equatorial Pacific are mainly induced by eastward abnormal subtropicalcyclone pairs,which are located in north and south Pacific respectively,and are not the eastwardwesterly anomalies from equatorial Indian Ocean.  相似文献   

15.
An equatorial β-plane model which includes realistic non-uniform land-sea contrast and the underlying surface temperature distribution is used to simulate the 30-60 day oscillation (LFO) processes in tropical atmosphere, with emphasis on its longitude-dependent evolution and convective seesaw between Indian and the western Pacific oceans.The model simulated the twice-amplification of the disturbances over Indian and the western Pacific oceans while they are travelling eastward. It reproduced the dipole structure caused by the out-of-phase oscillation of the active centres in these two areas and the periodical transition between the phases of LFO. It is suggested that the convective seesaw is the result of interaction of the internal dynamics of tropical atmosphere with the zonally non-uniform thermal forcing from underlying surface. The convective activities are suppressed over Indonesia mari-time continents whilst they are favoured over the Indian Ocean and western Pacific warm waters, so there formed two active oscillation centres. The feedback of convection with large-scale flow slows down the propagation of disturb-ances when they are intensifying over these two areas, therefore they manifest a kind of quasi-stationary component to favor the ‘dipole’ structure. Whereas the disturbances weaken and speed up over the eastern Pacific cold water re-gion due to the interaction of sensible heating and evaporation with perturbational wind. Therefore the two major centers just show out-of-phase oscillation during onecycle around the latitudinal beltBy introducing the SST anomalies in El Ni?o and La Ni?a years into the surface temperature, we also show that they have significant influence on LFO processes. In an anomalously warm year, the LFO disturbances dissipate more slowly over the central-eastern Pacific region and can travel farther eastward; whilst in an anomalously cold year, the opposite is true.  相似文献   

16.
The seasonal variation of rainy season over the Tibetan Plateau in summer 1998 is analyzed byusing daily observational rainfall data for Lhasa from 1955 to 1996,and rainfall data at 70 stationsfrom January to August of 1998 over the Tibetan Plateau (TP) and adjacent regions,as well asTBB data from May to August of 1998.The onset date of rainy season for Lhasa is climatologically6 June.Among the analyzed years,the earliest onset date is 6 May,while the latest may delay to2 July.The obvious inter-decadal variation can be found in the series of onset date.The onset dateof summer 1998 over middle TP (onset date of Lhasa) is 24 June,which is relatively later than thenormal case.The onset for rainy season of 1998 started over southeast and northeast parts of TP and thenpropagated westward and northward.The convection over east and west parts of TP shows thatthere is a quasi 12-15 day oscillation.In June,the convection over middle and lower reaches ofYangtze River is formed by the westward propagation of convection over subtropical westernPacific.while in July.it is formed by the eastward propagation of convection over TP.Besides,it is also found that there exists good negative and obvious advance and lagcorrelation between the convection over the middle and western TP and that over the subtropicalwestern Pacific and southern China.Therefore it can be inferred that a feedback zonal circulationwith a quasi two-three week oscillation exists between the ascending region of TP and descendingregion of subtropical western Pacific,i.e.the convection over TP may affect the subtropical highover western Pacific and vice versa.  相似文献   

17.
This paper attempts to reveal a long-distance-relayed water vapor transport(LRWVT) east of Tibetan Plateau and its impacts. The results show that from August to October, east of Tibetan Plateau, there exists a unique LRWVT,and the water vapor from the South China Sea and the western Pacific can affect the Sichuan Basin, Northwest China and other Chinese regions far from the tropical sea through this way. From August to October, the precipitation of the region east of the Plateau is closely linked both in the intra-annual and inter-annual variations, and the LRWVT from the South China Sea and the western Pacific is an important connection mechanism. The large-scale circulation background of the LRWVT impacting the precipitation of the region east of the Plateau is as follows: At high levels,the South Asian High is generally stronger than normal and significantly enhances with its northward advance and eastward extension over the region east of the Plateau. At mid-level, a broad low pressure trough is over Lake Balkhash and its surroundings, and the Western Pacific Subtropical High(WPSH) is northward and westward located, and the western part of Sichuan Basin and the eastern part of Northwest China are located in the west and northwest edge of WPSH.  相似文献   

18.
Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. In winter, the anomaly of the strong (weak) atmospheric cold source over the eastern plateau causes low-level anomalous north (south) winds to appear in eastern China and low-level anomaly zonal west (east) winds to prevail in the equatorial Pacific from spring to autumn. This contributes to the anomalous warm (cold) sea surface temperature the following autumn and winter. In addition, the anomalous variation of sea surface temperature over the equatorial middle and eastern Pacific in winter can influence the snow depth and intensity of the cold source over the plateau in the following winter due to variation of the summer west Pacific subtropical high.  相似文献   

19.
Many previous studies have demonstrated that the boreal winters of super El Nino events are usually accompanied by severely suppressed Madden-Julian oscillation(MJO) activity over the western Pacific due to strong descending motion associated with a weakened Walker Circulation. However, the boreal winter of the 2015/16 super El Nino event is concurrent with enhanced MJO activity over the western Pacific despite its sea surface temperature anomaly(SSTA)magnitude over the Nino 3.4 region being comparable to the SSTA magnitudes of the two former super El Nino events(i.e.,1982/83 and 1997/98). This study suggests that the MJO enhanced over western Pacific during the 2015/16 super El Nino event is mainly related to its distinctive SSTA structure and associated background thermodynamic conditions. In comparison with the previous super El Nino events, the warming SSTA center of the 2015/16 super El Nino is located further westward, and a strong cold SSTA is not detected in the western Pacific. Accordingly, the low-level moisture and air temperature(as well as the moist static energy, MSE) tend to increase in the central-western Pacific. In contrast, the low-level moisture and MSE show negative anomalies over the western Pacific during the previous super El Nino events.As the MJO-related horizontal wind anomalies contribute to the further westward warm SST-induced positive moisture and MSE anomalies over the western tropical Pacific in the boreal winter of 2015/16, stronger moisture convergence and MSE advection are generated over the western Pacific and lead to the enhancement of MJO convection.  相似文献   

20.
The influence of intraseasonal oscillation (ISO) on TC genesis over the northwestern Pacific is studied through comparing analyses of the more and less TC years from 1979 to 2006. It is indicated that the ISO strongly affects the TC genesis. In the years for more TC genesis, the ISO is weak and propagates insignificantly in the area to the west of the Philippines, but the ISO is strong in the area to the east of the Philippines and propagates significantly northwestward. In this situation, the Walker cell shifts gradually westward from the tropical western Pacific to the tropical eastern Indian Ocean. Convergent winds appear in the lower atmosphere while divergent winds in the upper atmosphere, suggesting the presence of enhanced ascending flow over the 140-160°E region and a favorable condition for TC genesis. Moreover, in the years for less TC genesis, the ISO gradually becomes stronger in the area to the west of the Philippines and significant eastward propagation prevails from the eastern Indian Ocean to the area around 120°E; the ISO is weak in the area to the east of the Philippines. During these years, the Walker circulation gradually moved eastward, with convergent winds in the upper troposphere and divergent winds in the lower troposphere. Sinking motion was significant, unfavorable for the TC genesis over the Northwestern Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号