首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equatorial latitude of auroral activity has been derived from both electron and optical observations with the DMSP satellites. Virtually all of the observations that were obtained during the 5-year interval June 1972-September 1977 have been used to construct a nearly continuous plot of invariant geomagnetic latitude versus time.This plot has two main characteristics: (1) A diurnal variation of approximately ± 5° which is associated with the precession of the Earth's magnetic dipole axis about the Earth's rotation axis; (2) an irregular variation of roughly 5–10° for intervals of one to several days associated with the occurrence of solar flares and coronal holes.With the help of a condensed, Bartels-type display of these measurements, we conclude that: (a) Modest auroral expansions (to ~ 60°) occur during the main body of high-speed streams from coronal holes; (b) great expansions (to < 55°) occur only during intervals of intense interplanetary magnetic fields such as may occur at the leading edge of a high-speed stream or at a flare-produced interplanetary shock.  相似文献   

2.
Raeder  J.  Wang  Y.L.  Fuller-Rowell  T.J.  Singer  H.J. 《Solar physics》2001,204(1-2):323-337
We present results from a global simulation of the interaction of the solar wind with Earth's magnetosphere, ionosphere, and thermosphere for the Bastille Day geomagnetic storm and compare the results with data. We find that during this event the magnetosphere becomes extremely compressed and eroded, causing 3 geosynchronous GOES satellites to enter the magnetosheath for an extended time period. At its extreme, the magnetopause moves at local noon as close as 4.9 R E to Earth which is interpreted as the consequence of the combined action of enhanced dynamic pressure and strong dayside reconnection due to the strong southward interplanetary magnetic field component B z, which at one time reaches a value of −60 nT. The lobes bulge sunward and shield the dayside reconnection region, thereby limiting the reconnection rate and thus the cross polar cap potential. Modeled ground magnetic perturbations are compared with data from 37 sub-auroral, auroral, and polar cap magnetometer stations. While the model can not yet predict the perturbations and fluctuations at individual ground stations, its predictions of the fluctuation spectrum in the 0–3 mHz range for the sub-auroral and high-latitude regions are remarkably good. However, at auroral latitudes (63° to 70° magnetic latitude) the predicted fluctuations are slightly too high. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014228230714  相似文献   

3.
For more than a decade there has been growing conviction that the burst of energy from a solar flare is first stored in magnetic fields and is then released rapidly by magnetic field annihilation (magnetic merging). There has also been recognition that magnetic merging may be responsible for the energy release manifested in auroral phenomena at the Earth. The most substantial evidence that magnetic merging does indeed occur in the Earth's magnetosphere and causes the auroral phenomena is provided by recent observations, in the magnetotail, of very rapid (500 km s–1) tailward, then earthward, flow of plasma during magnetospheric substorms. The observations, made with the Vela and IMP satellites, reveal also that the component of the tail magnetic field perpendicular to the tail neutral sheet changes polarity at the time of the reversal of plasma flow. These features are interpreted as indicative of passage of a magnetic neutral line, at which magnetic merging is proceeding, past the observing satellite. This paper describes an example of such observations made with IMP 6. It is anticipated that such systematic measurements of the plasma, energetic particles and magnetic field in the neighborhood of the passing neutral line on many such occasions will provide a general understanding of the magnetic merging process which can then be applied to studies of solar flares and other astrophysical phenomena.Work performed under the auspices of the U.S. Energy Research and Development Administration.  相似文献   

4.
Valdés-Galicia  J.F.  Dorman  L.I.  Rodríguez  M. 《Solar physics》2000,191(2):409-417
We revise the published neutron monitor raw data for the increase caused by the solar neutron event of the 24 May 1990. With these data we calculate the attenuation length, , of solar neutrons in the Earth's atmosphere assuming either a minimum path as given by the spread of elastically scattered neutrons, or using the minimum mass path estimated by Smart, Shea, and O'Bren (1995) due to an atmospheric refraction effect. In both cases reduces to a value around 100 g cm–2, which is more in accordance with data on neutron cross-sections (Shibata, 1994). These two phenomenological calculations suggest that solar neutrons do not propagate in straight lines in the atmosphere. The previous estimate of the attenuation length, =208 g cm–2, was calculated assuming straight-ahead transport (Smart, Shea, and O'Bren, 1995). Dorman, Valdes-Galicia, and Dorman (1999) performed a numerical simulation and an analytical approximation to the problem of solar neutron scattering and attenuation in the Earth's atmosphere. These solutions incorporate the refraction effect as a natural consequence of the greater absorption experienced by neutrons scattered to large zenith angles. They are able to reproduce the normalised observed counting rates of neutron monitors for this event.  相似文献   

5.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

6.
The discrepancy between the observed apparent acceleration of the Moon in longitude (1) and the actual lunar laser ranging data (3), (4) is of the order of ~ 9 × 10–23 rad s–2. It cannot be explained by the rms errors in (1) and (3), (4); processes connected with the internal Earth's dynamics and accelerating the Earth in its rotation might be responsible for the phenomenon, leading to the decreasing of the principal moment of the Earth's inertia ~ – 3.2 × 1029m2 kg cy–1.  相似文献   

7.
The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H2 band systems and H Lyman-α from day 275 of 2000 (October 1), to day 81 of 2001 (March 22). Much of the globally integrated auroral variability measured with UVIS can be explained simply in terms of the rotation of Jupiter's main auroral arcs with the planet. These arcs were also imaged by the Space Telescope Imaging Spectrograph (STIS) on Hubble Space Telescope (HST). However, several brightening events were seen by UVIS in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and in one case can clearly be tied to a large solar coronal mass ejection event. The auroral UV emissions from these bursts also correspond to hectometric radio emission (0.5-16 MHz) increases reported by the Galileo Plasma Wave Spectrometer (PWS) and Cassini Radio and Plasma Wave Spectrometer (RPWS) experiments. In general, the hectometric radio data vary differently with longitude than the UV data because of radio wave beaming effects. The 2 largest events in the UVIS data were on 2000 day 280 (October 6) and on 2000 days 325-326 (November 20-21). The global brightening events on November 20-21 are compared with corresponding data on the interplanetary magnetic field, solar wind conditions, and energetic particle environment. ACE (Advanced Composition Explorer) solar wind data was numerically propagated from the Earth to Jupiter with an MHD code and compared to the observed event. A second class of brief auroral brightening events seen in HST (and probably UVIS) data that last for ∼2 min is associated with auroral flares inside the main auroral ovals. On January 8, 2001, from 18:45-19:35 UT UVIS H2 band emissions from the north polar region varied quasiperiodically. The varying emissions, probably due to auroral flares inside the main auroral oval, are correlated with low-frequency quasiperiodic radio bursts in the 0.6-5 kHz Galileo PWS data.  相似文献   

8.
Huang  G.L.  Wu  H.A.  Grechnev  V.V.  Sych  R.A.  Altyntsev  A.T. 《Solar physics》2003,213(2):341-358
A solar radio burst on 25 August 1999 with fine structures (FS) at 4.5–7.5 GHz is studied in this paper. The FS started about one minute prior to the main burst. The maximum emission took place at 4–5 GHz for the FS, and at 10–11 GHz for the main burst, respectively. The time profiles at 4.5–7.5 GHz coincide very well with those of hard X-rays (from 25 keV to >300 keV) in both the main burst and the FS, which shows that the same population of accelerated electrons is responsible for both the microwave and hard X-ray bursts. The source of FS is 20 arc sec away from the main source close to a compact dipolar magnetic field, which is confirmed by different time and polarization profiles in the FS and main sources. It is interesting that the FS at 4.5–7.5 GHz are associated with a series of twisted magnetic loops or ropes, which may be modulated by Alfvén waves with a period of 1 s and a spatial wavelength of 103 km in respect to the typical Alfvén velocity of 103 km s–1 in corona. These magnetic ropes may be rooted in the dipole site, which extended into the corona during the event and retracted after the event. Therefore, the FS in this event may show an important signature or precursor for energy release. The magnetic reconnection may be triggered by the interaction of the magnetic ropes at the height corresponding to 5–6 GHz, followed by cascaded energy release close to the foot-point of the magnetic ropes.  相似文献   

9.
The behaviour of energetic electrons in the distant magnetosphere near the midnight meridian during polar substorms has been studied for the period March 5th–April 4th, 1965, using data from two end window Geiger counters flown on the IMP 2 satellite (apogee 15.8 Earth radii) and magnetic records from a chain of auroral zone stations around the world at magnetic latitudes equivalent to L = 7.4 ± 2.0.

When the satellite was in the distant radiation zone or in the plasma sheet which extends down the Earth's magnetic tail, sudden decreases in the horizontal magnetic field component at ground stations near the midnight meridian (negative magnetic bays) were followed by sudden increases in 40 keV electron fluxes (electron islands) at the satellite. When the satellite was at high latitudes in the magnetic tail ‘bays’ often were not followed by ‘islands.’ When the satellite was near the centre of the plasma sheet, energetic electron fluxes were observed even during magnetically quiet periods. The time delay between the sharp onset of magnetic bays in the auroral zone and the corresponding rapid increase in energetic electron intensity at the satellite, typically some tens of minutes, was least when the satellite was close to the Earth and increased with its increasing radial distance from the Earth. The delay was also a function of distance of the satellite from the centre of the plasma sheet, and of the magnitude of the intensity increase (smaller delays for larger intensity increases). We deduce that the disturbance producing the magnetic bays and associated particle acceleration originates fairly deep in the magnetosphere and propagates outward to higher L values, and down the plasma sheet in the Earth's magnetic tail on the dark side of the Earth. It is unlikely that the accelerated electrons are themselves drifting away from the Earth, because the apparent velocity with which the islands move away from the Earth decreases with increasing distance from the Earth.

It is suggested that the polar substorm and the associated particle acceleration are part of an impulsive ejection mechanism of magnetospheric energy into the ionosphere, rather than an impulsive injection mechanism of solar wind energy into the magnetosphere.  相似文献   


10.
The emission regions on the white-dwarf primaries of AM Her type systems are suggested to be extended and offset from the magnetic pole similar to the oval arc of emission formed by the Earth's auroral zone. In ST LMi and EF Eri, the emitting areas of the bremsstrahlung, the soft X-ray, and the cyclotron sources are shown to display a hierarchy with a small bremsstrahlung core being surrounded by a larger cyclotron halo. Core and halo are characterized by large differences in specific accretion rate with that in the bremsstrahlung core corresponding to a sizable fraction (10%) of the Eddington rate.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

11.
An impulsive burst of 100–400 keV solar X-rays associated with a small solar flare was observed on October 10, 1970 with a large area scintillator aboard a balloon floating at an altitude of 4.2 g cm-2 above the Earth's surface. The X-ray burst was also observed simultaneously in 10–80 keV range by the OGO-5 satellite and in 8–20 Å range by the SOLRAD-9 satellite. The impulsive X-ray emission reached its maximum at 1643 UT at which time the differential photon spectrum in 20–80 keV range was of the form 2.3 × 104 E -3.2 photons cm-2 s-1 keV-1 at 1 AU. The event is attributed to a H-subflare located approximately at S13, E88 on the solar disc. The spectral characteristics of this event are examined in the light of the earlier X-ray observations of small solar flares.  相似文献   

12.
The equatorward boundary of auroral activity during 1973–1974 has been derived from DMSP photographs and their associated auroral analysis records. On a time scale of days, the equatorward position of the northern auroral oval varied in phase with the average level of geomagnetic activity. In general, this variation was associated with the occurrence of solar flares and coronal holes. On a time scale of hours, the equatorward position of the oval correlated with the AE index of substorm activity and with the strength of the southward component of the interplanetary magnetic field.  相似文献   

13.
A serendipitous event is reported in which the MAGSAT satellite intercepted an auroral arc over Svalbard, Norway where an all-sky television camera, a photographic camera and a meridian scanning photometer were making continuous measurements. The high time resolution of the optical measurements and the high spatial resolution of the magnetometer data are combined to investigate the relationship between the fine structure in the field-aligned current reversals and the temporal and spatial morphology of the auroral structure. Meridian scans of several optical emissions in the auroral arc, which had its upper portion in sunlight, are utilized to derive the total energy input and the intensity of the precipitating energetic electrons. The MAGSAT satellite apparently intercepted a fold within an extended intense upward current sheet. The current carried by the energetic electrons responsible for the optical aurora is found to be smaller than the field-aligned current derived from the magnetic perturbations, implying that there may be a large flux of low energy particles in this arc. Within the spatial-temporal constraints of this event there is a suggestion that the rayed structure is related to the field-aligned current reversals.  相似文献   

14.
Work at Goddard is preséntly being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm–2, for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10–7 to 10–6 erg cm–2 size region where dozens of events per day are expected on a –1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. This experiment is the sequel to a single balloon flight in May 1974, in which candidate events were found to fit the –1.5 spectral extrapolation, indicating the need for positive event identification. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) Our gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the –1.5 index power law down to 2.5×10–5 erg cm–2 per event, at an occurrence rate of about once per month.Paper presented at the COSPAR Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

15.
Responses of the polar ionosphere to the Bastille Day solar event   总被引:1,自引:0,他引:1  
Liu  Rui-yuan  Hu  Hong-qiao  Liu  Yong-hua  Xu  Zhong-hua  Sato  N.  Fraser  B.J. 《Solar physics》2001,204(1-2):305-313
Simultaneous observations at Zhongshan Station, Antarctica, are presented for the interval of 13–17 July 2000 to show responses of the polar ionosphere to the Bastille Day (14 July 2000) solar event. The polar ionosphere was highly disturbed, as shown by frequently large deviations of the geomagnetic H-component, large riometer absorption events and strong ULF waves. Associated with the huge solar proton event produced by the X5/3B flare, a polar cap absorption (PCA) was observed. It began at ∼ 10:40 UT on 14 July and ended at ∼ 19:40 UT on 17 July. Superposed on it, there was a large absorption event with a peak of 26 dB, starting at ∼ 03:00 UT and ending at ∼ 11:10 UT on 15 July. This kind of absorption was probably produced by an intense `cloud of energetic electrons' during an auroral substorm. The ULF waves were very intense during the main phase and the recovery phase of the severe magnetic storm on 15 and 16 July. The ionospheric absorption was so strong that the digisonde signal was blacked out most of the time. The ionosphere returned to normal in the afternoon on 17 July.  相似文献   

16.
A high resolution study in time, frequency, position, and intensity was made at 169 MHz and neighbouring frequencies of the solar radio event of 1971, January 14, 11h 20m–30m UT. The event consisted of two closely resembling groups of type III bursts and type II like details.Before, during, and after the outburst a stationary type IV continuum was seen, with small amplitude pulsating structure. The size of the pulsating structure (which was located inside the continuum) was considerably smaller than the continuum size, and in agreement with an explanation by fluctuating magnetic inhomogeneities inside the continuum source.The continuum moved outward after each outburst at a high speed (2–4000 km s–1). After the second event the continuum source returned inward slowly ( 450 km s–1). The outward motion is discussed. It can be explained by a combination of the impact of a fast magnetohydrodynamic shock and the injection of highly energetic particles during the event, the required number being also necessary to account for the observed radio flux. The slow returning motion can be related to mhd restoring of the magnetic field configuration.  相似文献   

17.
G. M. Brown 《Solar physics》1981,74(1):125-129
Two independent methods of predicting the magnitude of the peak of a forthcoming sunspot cycle are summarized. One is based on considerations of the development of spots relative to the area of the faculae within which they form during the early stages of the cycle in question, and gives a lead-time of about 2 years. The other uses measurements of the quiet-day variations of the Earth's magnetic field at the time of the preceding sunspot minimum and allows predictions to be made a half-cycle ahead. A possible extension of this technique to the use of data on the component of the interplanetary magnetic field normal to the ecliptic plane is suggested. References to fuller details of both methods are given.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

18.
Cauzzi  G.  Falchi  A.  Falciani  R. 《Solar physics》2001,199(1):47-60
We analyze the temporal behavior of network bright points (NBPs) searching for low-atmosphere signatures of flares occurring on the magnetic network. We make use of a set of data acquired during coordinated observations between ground-based observatories (NSO/Sacramento Peak) and the MDI instrument on board SOHO. Light curves in chromospheric spectral lines show only small-amplitude temporal variations, without any sudden intensity enhancement that could suggest the presence of a transient phenomenon such as a (micro)flare. Only one NBP shows spikes of downward velocity, of the order of 2–4 km s–1, considered as signals of compression associated with a (micro)flare occurrence. For this same NBP, we also find a peculiar relationship between the magnetic and velocity fields fluctuations, as measured by MDI. Only for this point the BV fluctuations are well correlated, suggesting the presence of magneto-acoustic waves propagating along the magnetic structure. This correlation is lost during the compression episodes and resumes afterward. An A6 GOES soft X-ray burst is temporally associated with the downward velocity episodes, suggesting that this NBP is the footpoint of a flaring loop. This event has a total thermal energy content of about 1028 erg, and, hence, belongs to the microflare class.  相似文献   

19.
Sconzo has proposed that the continental drift of a land mass like Greenland can make a detect-able change in the Earth's rotation rate through a change in the Earth's moment of inertia. The correction of theoretical and numerical errors in his paper results in a change in the length of the day of only 3.5×10–8 s cy–1, a rate which is 6 orders of magnitude less than the value he gives. Continental drift does not appear to cause an important change in the length of the day.  相似文献   

20.
In this paper we have examined the real behaviour of solar activity during the period AD 1400–1600. The results are as follows: (1) the distributions of the 20 naked-eye sunspot records are inhomogeneous. There are 2 sightings in the 15th century and 18 sightings in the 16th century; (2) the distributions of auroral records are similar to sunspot. There are 33 records in the 15th century and 315 records in the 16th century; (3) the climatic fluctuations in China shows that the period AD 1430–1520 was cold while the period AD 1520–1620 was warm. These facts clearly demonstrate that the Spörer Minimum, if it extended from AD 1460 to 1550, could be a specious results and it, if its extent was AD 1400–1510, is a real feature of solar variability in that time.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号