首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Riverine populations of shortnose sturgeon (Acipenser brevirostrum) once occurred in rivers and estuaries along the east coast of North America from the St. John River, New Brunswick, to the St. Johns River, Florida. Within this range, 19 population segments were identified by the U.S. Federal Shortnose Sturgeon Recovery Team; empirical data supporting this structure is limited. We obtained samples from 11 (12 including a small sample from the Cape Fear River, North Carolina) of these population segments and used PCR and direct sequence analysis of 440 base pairs of the mitochondrial DNA (mtDNA) control region to define the coast-wide genetic population structure of shortnose sturgeon. Collections from most population segments exhibited significant differences in haplotype frequencies with their nearest neighbors, including from the Ogeechee and Savannah Rivers, Georgia (despite the known movement of hatchery-reared offspring from the Savannah into the Ogeechee River). Collections from the Chesapeake Bay and Delaware River exhibited similar haplotype frequencies, suggesting that specimens collected in the Chesapeake Bay had dispersed from the Delaware River. Collections from the Kennebec River and Androscoggin River within a hypothesized single population segment did not exhibit significant differentiation of mtDNA haplotype frequencies. Haplotype frequencies were almost identical between collections from above and below the Holyoke Dam on the Connecticut River, indicating that these aggregations should be managed as a single unit. Our results support the population segment status afforded to shortnose sturgeon in at least the following 9 systems; St. John River, Kennebec-Androscoggin Rivers, upper-lower Connecticut River, Hudson River, Delaware River-Chesapeake Bay, Pee Dee River, Cooper River, Savannah River, and Ogeechee-Altamaha Rivers.  相似文献   

2.
All available capture records of the endangered shortnose sturgeon,Acipenser brevirostrum, for the Delaware River Estuary from the early nineteeth century to the present were compiled. During 1817 through 1913 some 1,949 captures were reported, most as a bycatch of the shad gill net fishery. No documented captures during 1913 to 1954 were reported in the literature. Thirty-seven shortnose sturgeon were reported captured from 1954 through 1979, mostly incidental to fishery and ecological studies. Most specimens were taken in the upper tidal freshwater portion of the estuary (rkm 200–214). Seasonal-spatial distribution appeared similar to that observed for northern shortnose sturgeon populations. Taxonomic data obtained from seven specimens generally agreed with those from other drainages.  相似文献   

3.
Sampling in the upper tidal Delaware River between Trenton, New Jersey, and Philadelphia, Pennsylvania, from July 1981 through December 1984 demonstrated the existence of a significant population of shortnose sturgeon. The sturgeon aggregate in the river channel during daylight hours, especially in the area between Trenton and Florence, New Jersey (river km 211.8 to 198.8). Occurrence in the river downstream of Florence appears to be restricted by poor water quality during summer months. Sturgeon were present in the study area throughout the year, but largest numbers were collected from May though November. No spawning was observed during this study, but presence of males with milt suggests that spawning possibly occurs in the Trenton area. Preliminary population estimates (Peterson, Schnabel and Seber-Jolly) indicate an adult population of approximately 6,000–14,000 shortnose sturgeon occupying the upper tidal Delaware River.  相似文献   

4.
Data from sonic tracking during the period 1983–1987 enabled us to define the areas used and the seasonal pattern of movement by adult shortnose sturgeon (Acipenser brevirostrum) in the Delaware River. Tagged adults (n=28) ranged from 544 mm to 871 mm fork length and 1,510 g to 7,125 g. Twenty-six tags were carried for 7–225 d. Most of the tagged sturgeon were relocated in the tidal portion of the river. Sturgeon that overwintered in the upper tidal river near Trenton, New Jersey, began traveling upstream in late March to the nontidal river above Trenton where spawning presumably occurred from late March through April. After spawning, sturgeon traveled rapidly downstream into the tidal portion of the river near Philadelphia, Pennsylvania, where they remained through the end of May. Before the end of June, most sturgeon returned upstream and re-entered the upper tidal river near Trenton, where most apparently remained for the summer and winter. In general, the same pattern was apparent for both sexes. As a result of the intensive use of the river between Philadelphia to just above Trenton, any alterations or additional insults to the river should consider the impact on this endangered species.  相似文献   

5.
Adult horseshoe crabs,Limulus polyphemus, were tagged in the Middle Atlantic Bight area, from New York to Virginia on the continental shelf and within bays, to determine their migratory patterns and longevity. Of 30,432 horreshoe crabs that were tagged during the years 1986–2002, 1,122 were recovered alive, and 1,027 were dead. Many of the live recoveries were observed within 30 d (54.4%) and after years (37.53%) with one tagged animal surviving up to 10 yr. In 9 locations from Great Kills Harbor, New York, to Chesapeake Bay, Maryland, the horseshoe crabs return to their release beach within days during the spawning season. Of the 762 (100%) recoveries from crabs released along the Delaware Bay shoreline, 75.07% traveled 0–20 km, 21.0% traveled 20–50 km, 2.36% traveled 50–100 km, and 1.57% traveled over 100 km. Within Delaware Bay, 327 tagged animals (43.6%) had moved away from the release points to other locations, and 59 of these had moved out of the bay onto the continental shelf along the Mid-Atlantic Bight coastline. Horseshoe crabs migrate into Delaware Bay from waters off Ocean City, Maryland, and adjacent coastal bays. In addition to defining the range of the Delaware Bay spawning populations, 2 neighboring populations were identified by the tagging program. In one, animals tagged in southern New York mingled with those in the Sandy, Hook, New Jersey area, comprising a population that ranged from Raritan Bay across New York Harbor to Jamaica Bay. The second confirmed that a discrete population existed in northern Chesapeake Bay in the general vicinity of the Annapolis Bay Bridge.  相似文献   

6.
The Delaware Bay contains the world’s largest population of horseshoe crabs, which constitute an ecologically significant component of this estuarine ecosystem. The North Atlantic speciesLimulus polyphemus has an extensive geographical distribution, ranging from New England to the Gulf of Mexico. Recent assessments of the Delaware Bay population based on beach spawning and trawling data have suggested a considerable decrease in the number of adult animals since 1990. Considerable debate has centered on the accuracy of these estimates and their impact on marine fisheries management planning. Compounding this problem is the lack of information concerning the genetic structure of Atlantic horseshoe crab populations. This study assessed patterns of genetic variation within and between the horseshoe crab populations of Delaware Bay and Chesapeake Bay, using both Random Amplification of Polymorphic DNA (RAPD) and DNA sequence analysis of the mitochondrial cytochrome oxidase I gene (COI). We examined 41 animals from Delaware Bay and 14 animals from the eastern shore of Chesapeake Bay. To provide high quality, uncontaminated genomic DNA for RAPD analysis, DNA was isolated from hemocytes by direct cardiac puncture, purified by spin column chromatography, and quantified by agarose gel electrophoresis. RAPD fingerprints revealed a relative paucity of polymorphic fragments, with generally homogeneous banding patterns both within and between populations. DNA sequence analysis of 515 bases of the 5′ portion of the mitochondrial COI gene showed haplotype diversity in the Chesapeake Bay sample to be significantly higher than in the Delaware Bay sample, despite the larger size of the latter. Haplotype analysis indicates minimal contemporary gene flow between Delaware Bay and Chesapeake Bay crab populations, and further suggests that the Delaware Bay population is recovering from a recent population decline.  相似文献   

7.
Shortnose sturgeon,Acipenser brevirostrum, is a small, endangered species which occurs in 19 estuary systems along the east coast of North America. These populations are considered as separate entities by the U. S. National Marine Fisheries Service although evidence of morphologic or genetic differentiation among populations has not been documented. The purpose of this study was to compare morphological and genetic atributes among shortnose sturgeon collected from the Kennebec and Androscoggin Rivers, Maine, and the Hudson River, New York. Six morphometric and five meristic characteristics were quantified. Multivariate and univariate analyses of covariance and variance were used to assess differences among populations. Our analyses provided evidence for distinct populations in the Androscoggin and Kennebec Rivers, but character differentiation was greater between fish from these two locations and the Hudson River. Analysis of morphometric characters indicated significant differences in fish shape among the three rivers, with Hudson River sturgeon differing from the Maine rivers for the characters of head length, snout length, and mouth width. Significant differences were observed for meristic characters, but pairwise comparisons did not reflect a clear pattern of variability. Sequencing of a portion of the mitochondrial DNA control region revealed 15 haplotypes among 73 total specimens from the three rivers. Shortnose sturgeon from the Kennebec and Androscoggin Rivers were different from each other (p=0.0260); both differed significantly (p<0.0001) from the Hudson River collection. Gene flow was estimated at approximately 7 female migrants per generation between the two Maine populations and about 1 per generation between each of the Maine populations and the Hudson River population. Such strong stock structuring among presumably recently established post-Pleistocene (<10,000 yr) populations suggests that this species occurs in highly discrete units. Morphological and genetic variation observed in this study combined with current knowledge of life history attributes of shortnose sturgeon indicate that conservative management decisions are necessary until the patterns and extent of differentiation among populations species-wide can be investigated further.  相似文献   

8.
Eighty-nine juvenile Atlantic sturgeon,Acipenser oxyrhynchus oxyrhynchus, including 10 recaptures, were collected, tagged and released in the upper tidal Delaware River between July 1981 and December 1984. All were captured in the river channel between Roebling and Trenton, New Jersey, using bottom-set experimental gill nets during daylight hours. The species was present from July through December and collected in increased numbers in the past two years. The fork lengths ranged from 284 to 862 mm (mean±SD = 516 mm±106 mm) and the weights from 140 to 4,250 g (mean±SD = 1,369 g±815 g). Ten juvenile Atlantic sturgeon were recaptured between September 1983 and December 1984 and were at large from one to 418 d. Recapture data suggest that these sturgeon utilize this area annually from July through December, possibly as a nursery. Juvenile Atlantic sturgeon appear to utilize the upper tidal portion of the Delaware River for a much longer period of time and at lower temperatures than in other river systems.  相似文献   

9.
The Chesapeake and Delaware (C&;D) Canal is a man-made waterway connecting two of the largest estuaries on the east coast of the United States: Chesapeake Bay and Delaware Bay. A set of current meter data collected during April–May 1975 along two cross-sections of the C&;D Canal was used to examine the spatial distributions of the currents at tidal and subtidal time scales. The different responses of the Chesapeake and Delaware Bays to tidal and wind forcing produce significant differences in sea level fluctuations between the two ends of the canal. These alongcanal surface slopes produce significant barotropic current fluctuations at both tidal (semidiurnal and diurnal) and subtidal (2-d to 3-d) time scales. Under the influence of bottom friction, the barotropic currents near the surface are stronger than those at depth, but these currents do not exhibit significant lateral variations across the canal. On the other hand, the long-term flow in the canal exhibits strong lateral variability with eastward flow off the south shore of the canal and westward flow off the north shore of the canal. The lateral structure of the long-term flow may carry significant implications for the long-term exchange of material between the two bays.  相似文献   

10.
Large, recreationally or commercially important populations of Atlantic sturgeon (Acipenser oxyrinchus), American shad (Alosa sapidissima), and striped bass (Morone saxatilis) occur in the Hudson River. Members of the Hudson River populations of these fishes also occur over a broad range along the Atlantic coast where they mix with conspecifics from other anadromous populations. For management purposes, it is imperative to be able to discriminate among individual stocks so that weak stocks may be protected and harvest may be allocated equitably. Because of their sensitivity and resistance to environmentally-induced temporal variation, molecular approaches have been increasingly employed in stock identification studies. However, post-Pleistocene recolonization of the Hudson River must have occurred less than 10,000 years ago—a relatively brief period for genetic divergence among populations. We tested whether various measures of DNA variation between Hudson River populations and adjacent populations of Atlantic sturgeon, American shad, and striped bass were sufficient to discriminate among their conspecific populations. American shad populations surveyed for mtDNA variation were highly diverse genotypically, but genotypic frequencies among the populations of the Connecticut, Hudson, and Delaware rivers were statistically homogenous (p>0.05). In contrast, Atlantic sturgeon (surveyed for mtDNA variation) and striped bass (surveyed for mtDNA and nuclear DNA variation) populations of the Hudson River were not genotypically diverse, but they were differentiated from northern and southern populations. Our results suggest higher gene flow (and lesser homing fidelity) among American shad populations in comparison with the two other species.  相似文献   

11.
Bay scallop (Argopecten irradians) populations existed in Chesapeake Bay until 1933, when they declined dramatically due to a loss of seagrass habitat. Since then, there have been no documented populations within the Bay. However, some anecdotal observations of live bay scallops within the lower Bay suggest that restoration of the bay scallop is feasible. We therefore tested whether translocated adults of the southern bay scallop, Argopecten irradians concentricus, could survive during the reproductive season in vegetated and unvegetated habitats of the Lynnhaven River sub-estuary of lower Chesapeake Bay in the absence of predation. Manipulative field experiments evaluated survival of translocated, caged adult scallops in eelgrass Zostera marina, macroalgae Gracilaria spp., oyster shell, and rubble plots at three locations. After a 3-week experimental period, scallop survival was high in vegetated habitats, ranging from 98% in their preferred habitat, Z. marina, to 90% in Gracilaria spp. Survival in Z. marina was significantly higher than that in rubble (76%) and oyster shell (78%). These findings indicate that reproductive individuals can survive in vegetated habitats of lower Chesapeake Bay when protected from predators and that establishment of bay scallop populations within Chesapeake Bay may be viable.  相似文献   

12.
We evaluated the prevalence of partial migration, coexisting resident and migratory life history types, within six white perch (Morone americana) populations in sub-estuaries (Upper Bay, and Potomac, Choptank, Nanticoke, James, and York Rivers) of the Chesapeake Bay. Otolith stable isotope (δ18O) values were used to resolve fish habitat use along an estuarine salinity gradient and define resident or migratory behavior. The majority of adults within Upper Bay and Potomac River populations were resident, whereas individuals from the Choptank, Nanticoke, James, and York Rivers were predominantly migratory. Beyond population differences, large interannual variability in life history types was observed, likely due to differences in estuarine conditions that influence growth rate of individuals (e.g., temperature, zooplankton density). Because we observed partial migration in all study populations, we suggest that this trait is characteristic of this species, permitting plastic responses to variation in the estuarine environment.  相似文献   

13.
Massive blooms of the harmful alga Cochlodinium polykrikoides Margalef occurred in the lower Chesapeake Bay and its tributaries during the summers of 2007 and 2008. The Lafayette and Elizabeth Rivers appeared to act as initiation grounds for these blooms during both years. However, in 2008 there were also localized sites of initiation and growth of populations within the mesohaline portion of the James River. Bloom initiation appeared to be correlated with intense, highly localized rainfall events during neap tides. Subsequent spring tides increased tidal flushing and transport of C. polykrikoides from the Lafayette and Elizabeth Rivers into the lower James River where it was transported upriver by local estuarine circulation. Blooms dissipated in response to increased wind-driven mixing associated with frontal systems moving through the region. A combination of physical factors including, seasonal rainfall patterns, increased stratification, nutrient loading, spring-neap tidal modulation, and complex estuarine mixing and circulation allowed C. polykrikoides to spread and form massive blooms over large portions of the tidal James River and the lower Chesapeake Bay.  相似文献   

14.
The anadromous acipenserid Atlantic sturgeon Acipenser oxyrinchus was listed in 2012 under the U.S. Endangered Species Act as having four endangered and one threatened distinct population segment (DPS) in American waters. Anthropogenic activities outside of natal estuaries, particularly bycatch, may hinder the abilities of some populations to rebuild. Most Atlantic sturgeon are residential for their first 2–6 years within their natal estuaries, whereas older subadults and adults may migrate to non-natal estuaries and coastal locations. Previous studies demonstrated that subadults and adults aggregate during summer at locations in Long Island Sound (LIS) and its tributary, the Connecticut River; however, the population origin of these fish is unknown. Because of its geographic proximity and relatively robust population, we hypothesized that the LIS and Connecticut River aggregations were almost solely derived from the Hudson River. We used microsatellite nuclear DNA analysis at 11 loci and mitochondrial DNA control region sequence analyses to estimate the relative contributions of nine Atlantic sturgeon populations and the five DPS to these aggregations using individual-based assignment tests and mixed-stock analysis. From 64 to 73 % of specimens from LIS were estimated to be of Hudson origin. Similarly, 66–76 % of specimens from the Connecticut River were of Hudson origin. However, moderate numbers of specimens were detected from distant spawning populations in the southeastern DPS and from two populations once thought to be extirpated or nearly so, the James River (6–7.3 %), and the Delaware River (7.6–12 %). Additionally, specimens were detected from all five DPS in both the LIS and Connecticut River collections. These results highlight the difficulty of evaluating the status of individual Atlantic sturgeon populations because of the propensity of subadults and adults to migrate for extended duration to distant sites where they may be vulnerable to anthropogenic disturbances.  相似文献   

15.
Gulf sturgeon,Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June–July 2002 and February–April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m−2 (SE ± 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m−2, SE ± 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m−2 (SE ± 0.82) compared to 3.91 g m−2 (SE ± 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary.  相似文献   

16.
《Applied Geochemistry》2003,18(4):483-501
Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States—a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.  相似文献   

17.
The Delaware Bay region is the epicenter of horseshoe crab, Limulus polyphemus, activity, and despite the ecological and commercial importance of this species, few studies have examined the long-term movements of horseshoe crabs in this area and the amount of mixing that takes place between smaller coastal embayments within the region and the Delaware Bay proper, factors that are critical to effective management. To better understand these factors, 5568 crabs were tagged in the Delaware Inland Bays as part of the U.S. Fish and Wildlife Service’s (USFWS) Cooperative Horseshoe Crab Tagging Program in 2002–2016. A high re-sight rate of 20.1% (1123 crabs) was reported to the USFWS. Re-sights suggest that the Delaware Bay population is distributed between coastal New Jersey (south of Barnegat Bay) and coastal Virginia (north of Chincoteague Inlet). There were 90 re-sights in the Inland Bays and 148 re-sights in Delaware Bay, with 320 days or more between tagging and re-sight, showing that substantial interchange between successive spawning seasons occurs. Distance analyses demonstrated that crabs can move between the Inland Bays and other Delaware Bay region waterbodies within a single year. The findings of this study support the current management strategy of splitting the harvest of Delaware Bay crabs between New Jersey, Delaware, Maryland, and Virginia and also demonstrate that the waterbodies within the Delaware Bay region are highly connected. This connectivity supports protecting spawning habitat within the smaller embayments of the Delaware Bay region and including spawning surveys from these systems in future stock assessments.  相似文献   

18.
Long records of monthly salinity observations along the axis of Chesapeake Bay, Delaware Bay, and Long Island Sound are used to test a simple advection–dispersion model of the salt distribution in linearly tapered estuaries developed in a previous paper. We subdivide each estuary into three to five segments, each with linear taper allowing a distributed input of fresh water, and evaluate the dispersion in each segment. While Delaware Bay has weak dispersion and a classical sigmoidal salinity structure, Long Island Sound and Chesapeake Bay are more dispersive and have relatively small gradients in the central stretches. Long Island Sound is distinguished by having a net volume and salt flux out of its low-salinity end resulting in a smaller range of salinity and increasing axial gradients at its head rather than the usual asymptotic approach to zero salinity. Estimates of residence times based on model transport coefficients show that Long Island Sound has the most rapid response to fresh-water flux variations. It also has the largest amplitude cycle in river discharge fluctuation. In combination, these cause the large seasonal variation in the salinity structure relative to interannual variability in Long Island Sound as compared with Chesapeake Bay and Delaware Bay.  相似文献   

19.
Research on the effects of declining abundances of the Eastern oyster (Crassostrea virginica) in Chesapeake Bay and other estuaries has primarily focused on the role of oysters in filtration and nutrient dynamics, and as habitat for fish or fish prey. Oysters also play a key role in providing substrate for the overwintering polyp stage of the scyphomedusa sea nettle,Chrysaora quinquecirrha, which is an important consumer of zooplankton, ctenophores, and icthyoplankton. Temporal trends in sea nettle abundances in visual counts from the dock at Chesapeake Biological Laboratory, trawls conducted in the mesohaline portion of the Patuxent River, and published data from the mainstem Chesapeake Bay indicate that sea nettles declined in the mid 1980s when overfishing and increased disease mortality led to sharp decreases in oyster landings and abundance. Climate trends, previously associated with interannual variation in sea nettle abundances, do not explain the sharp decline. A potentially important consequence of declining sea nettle abundances may be an increase in their ctenophore prey (Mnemiopsis leidyi), and a resultant increase in predation on icthyoplankton and oyster larvae. Increased predation on oyster larvae by ctenophores may inhibit recovery of oyster populations and reinforce the current low abundance of oysters in Chesapeake Bay.  相似文献   

20.
The concentration of Kepone in extruded egg masses and the backfin muscles of the blue crab,Callinectes sapidus, collected from seven stations in the lower James River and lower Chesapeake Bay was determined. Crabs from the lower James River were generally more contaminated than those from the lower Chesapeake Bay. Extruded eggs contain approximately three times more Kepone than backfin muscle. Egg extrusion is concluded to be a major route of Kepone clearance from female blue crabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号