首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me-O bond ionicity, and molecular shape. Here, electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me-O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape control local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predicting acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model. However, we also show how our method for pKa prediction could be improved using ab initio molecular dynamics simulations of solvated surfaces.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Seismic reflection profiles (3.5 kHz) were obtained along more than 3500 km of shiptrack in Lake Superior within the last 2 yr. The acoustic character of profiles is categorized as: (I) a single, strong reflector at the lake floor, (II) a thick, acoustically transparent layer overlying a strong reflector, and (III) relatively thick sediment with internal acoustic reflectors. These profiles, in conjunction with sediment cores from the area, reveal that varved glacial-lacustrine sediment settled out preferentially in a trough between Isle Royale and the north shore, and to a lesser extent in other topographic depressions; bottom currents generated by storm waves prevent clay accumulation on till or bedrock in the open lake wherever the bottom is shallower than 100 m; bottom currents prevent deposition or erode bottom sediment in certain deep-water (> 200 m) valleys; and lacustrine sediment is disturbed by creep or slumping off Grand Portage, Minnesota, and by other processes such as dewatering in many other areas. These factors complicate sedimentation in Lake Superior, and must be considered when investigating any aspect of the lake sediment.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号