首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As part of a larger regional research program “KarstEAU”, the authors have applied electrical resistivity tomography (ERT) techniques to characterize heterogeneities in the Port-Miou coastal karst aquifer (Cassis, SE France). Field surveys were carried out on intensely fractured and karstified Urgonian carbonates. Extensive research has characterized macro- and micro-scale geology of the Port-Miou area and particularly underground water-filled conduits and fault/fracture and karst systems within a former quarry. The authors applied 2D ERT along two surface profiles of length 420 and 595 m to test capability for delineating subsurface conduits and possibly relationship between conduit and fault/fracture/karst orientation; and 3D ERT with a dense 120 electrode array at 1 m spacing (11 × 10 m) was applied over an area of the quarry that had been profiled using 3D georadar and which has had intensive nearby structural geological interpretation. The 2D profiling imaged several underground conduits at depths to >50 m below ground surface and below sea level, including possibly the main Port Miou submarine spring and smaller springs. The 2D profiling within the quarry provided a better understanding of the connectivity between major fractures and faults on the quarry walls and secondary springs along the coast supporting flow of the secondary springs along interpreted fracture orientations. In addition, 2D inversion-derived conductivity models indicate that high resistivity zones above sea-level are associated with non-saturated zones and low resistivity anomalies in the non-saturated zone are associated with residual clays in paleokarsts. A partitioned lower resistivity zone below sea-level can be associated with a higher porosity/permeability zone with fractures and karstic features. Inversion models of the dense 3D ERT data indicate a higher resistivity volume within the larger surveyed block. The survey characterized the non-saturated zone and the ERT resistivities are correlated with karst features interpreted by 3D georadar and visible in the inferior wall of the quarry.  相似文献   

2.
Khuff Formation is of utmost importance in Saudi Arabia for oil and gas reservoir although it is composed mainly of limestone. This reason refers to the existence of intensive fractures which play a vital role in the increase in porosity and permeability of this formation. The fracture pattern in the study area was verified through 2D and 3D ground penetrating radar (GPR)-defined and electrical resistivity tomography (ERT)-defined surveys. In this respect, ten of 2D GPR surveys were collected along an intersected grid of profiles covering the study area while ERT data were collected along three profiles of the GPR grid. The results were interpreted in light of the field-based structural and stratigraphic assessment of the outcropping rocks. The analysis of the inverted ERT and filtered GPR sections revealed the presence of fractures. Several resistivity and electromagnetic reflection anomalies were laterally and vertically identified across the measured sections clarifying fractures that extend to a depth of 24 m in the limestone. Most fractures are oriented vertical to sub-vertical dipping both east-west and north-south.  相似文献   

3.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

4.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   

5.
Ground water occurs in weathered formations of unsaturated zone and fractured rocks of saturated zone. The ground water occurring in the unsaturated zone is not sustainable while the ground water occurring in the fractured rocks are sustainable if properly exploited. But, targeting the productive fractured rocks needs careful evaluation and systematic approach of geophysical survey owing to the heterogeneity, magmatic and metamorphic activities of multiple episodes of rocks. Hence, judicious planning in ground water exploration is warranted because of the huge money involved in drilling, manpower and time factor. In this context, an attempt has been made to locate the fractured rocks of ground water potential in the Ophiolite formations of Port Blair, South Andaman Islands using Electrical Resistivity Tomography (ERT) and Vertical Electrical Soundings (VES) since the ground water database of Andaman and Nicobar islands is poor as not much work has been carried out so far and the ground water is not properly utilised. The ERT have been carried out along different azimuth of fractures to ascertain the resistivities in vertical and horizontal direction and the conductivity and/or the resistivity of the varied fractures was also evaluated by spot VES. The 2-D Electrical Resistivity Images in conjunction with the geoelectrical parameters brought out by VES revealed that E-W fractures are expected to be productive fractures showing more conductivity as it is compared with the NE-SW and NW-SE fractures. The potentiality of the E-W fractures was also validated with the borehole data.  相似文献   

6.
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.  相似文献   

7.
Groundwater contamination is one of the most significant problems in arid countries. Al-Quwiy’yia region is an example of an area where the groundwater is contaminated as a result of infiltration of waste water in low-lying areas adjacent to inhabited zones. Such contamination poses significant environmental threats for the surrounding environment and groundwater. Surface observations and spatial distribution of contamination observed in the shallow aquifer indicate that the main contamination sources were from sewage as well as from waste water dumping. However, the main source of water supply for the whole area is groundwater abstracted from the relatively shallow aquifer. Therefore, the transient electromagnetic method (TEM) and 2D electrical resistivity tomography (2D ERT) have been applied close to the waste water dump site to characterize the response of pollution plumes. Both of these geoelectrical techniques are sensitive to electrical conductivity as well as to other physical properties, which are greatly influenced by the polluted groundwater. Therefore, it is possible to profile the contamination plumes, both vertically and horizontally, in the vicinity of the measured stations. The ERT profiles gave detailed information about the lateral distribution of the contaminated groundwater, whereas the TEM demonstrated the vertical extensions.  相似文献   

8.
The groundwater flow systems and chemistry in the deep part of the coastal area of Japan have attracted attention over recent decades due to government projects such as geological disposal of radioactive waste. However, the continuous groundwater flow system moving from the shallow to deep parts of the sedimentary soft rock has not yet been characterized. Therefore, the Cl, δD and δ18O values of the pore water in the Horonobe coastal area in Hokkaido, Japan, were measured to 1,000 m below the ground surface, and a vertical profile of the pore-water chemistry was constructed to assist in elucidating groundwater circulation patterns in the coastal area. The results show that the groundwater flow regime may be divided into five categories based on groundwater age and origin: (1) fresh groundwater recharged by modern rainwater, (2) fresh groundwater recharged by paleo rainwater during the last glacial age, (3) low-salinity groundwater recharged during the last interglacial period, (4) mixed water in a diffusion zone, and (5) connate water consisting of paleo seawater. These results suggest that the appearance of hydrological units is not controlled by the boundaries of geological formations and that paleo seawater is stored in younger Quaternary sediments.  相似文献   

9.
The city of Burdur, which is built on an alluvium aquifer, is located in one of the most seismically active zones in southwestern Turkey. The soil properties in the study site are characterized by unconsolidated and water-saturated sediments including silty, clayey and sandy units, and shallow groundwater level is the other characteristic of the site. Thus, the city is under soil liquefaction risk during a large earthquake. A resistivity survey including 189 vertical electrical sounding (VES) measurements was carried out in 2000 as part of a multi-disciplinary project aiming to investigate settlement properties in Burdur city and its vicinity. In the present study, the VES data acquired by using a Schlumberger array were re-processed with 1D and 2D inversion techniques to determine liquefaction potential in the study site. The results of some 1D interpretations were compared to the data from several wells drilled during the project. Also, the groundwater level map that was previously obtained by hydrological studies was extended toward north by using the resistivity data. 2D least-squares inversions were performed along nine VES profiles. This provided very useful information on vertical and horizontal extends of geologic units and water content in the subsurface. The study area is characterized by low resistivity distribution (<150 Ωm) originating from high fluid content in the subsurface. Lower resistivity (3–30 Ωm) is associated with the Quaternary and the Tertiary lacustrine sediments while relatively high resistivity (40–150 Ωm) is related to the Quaternary alluvial cone deposits. This study has also shown that the resistivity measurements are useful in the estimation of liquefaction risk in a site by providing information on the groundwater level and the fluid content in the subsurface. Based on this, we obtained a liquefaction hazard map for the study area. The liquefaction potential was classified by considering the resistivity distributions from 2D inversion of the VES profiles, the types of the sediments and the extended groundwater level map. According to this map, the study area was characterized by high liquefaction hazard risk.  相似文献   

10.
The semiarid Punata alluvial fan is located in the central part of Bolivia. The main activity of this region is the extensive agriculture, and groundwater is the main water supply. Local villagers who use groundwater reported that in some places groundwater has a salty taste. In order to investigate the origin of this problem, several TEM soundings were performed in the study area, and they were complemented with ERT surveys. The results show top layers with resistivity values ranging from 30 to 200 Ωm and a bottom layer with resistivity values ranging from 1 to 20 Ωm, which might be interpreted as the main aquifer and a layer with high clay content, respectively. Between the top and bottom layer, a transition zone with saline water has been identified, with resistivity values ranging from 0.1 to 1 Ωm. The origin of this closed-basin brine might be a product of the evaporation of paleolakes during the lower Pliocene, where saline clays were deposited. This study demonstrated the effectiveness of TEM sounding for mapping very low resistivity zones such as saline water.  相似文献   

11.
Rock face diagnosis is a monitoring operation that is used to optimize rock-risk treatment works in terms of ensuring that safety requirements are met at the lowest cost. Diagnoses require measuring the location and orientation of rock discontinuities at the surface of the rock mass. These measurements are then entered into a structural model that extrapolates the data collected at the surface to the inner part of the rock mass. Currently, most surveys are empirical and are carried out manually using a compass-clinometer. In addition, they tend to examine only the most highly fractured area of a rock face, even though safety considerations demand an exhaustive study of the whole face. These deficiencies can be overcome by using dense 3D measurement techniques such as terrestrial laser scanning and optical imaging to obtain a more complete 3D model and structural statement. Hence, we have developed a semi-automatic process that allows 3D models to be combined with the results of field surveys in order to provide more precise analyses of rock faces, for example, by classifying rock discontinuities into subsets according to their orientation. Further research is being carried out in order to combine 3D data and 2D digital images as a support for structural survey. Trials carried out in a limestone quarry in the French Alps allowed us to compare data sets obtained using manual surveying methods, the well-known laser scanning method and the lower-cost photogrammetric survey method.  相似文献   

12.
Twenty profiles of vertical electric soundings (VES) were obtained in a riverside alluvium at the Buyeo area, South Korea, to examine the variations of subsurface geology and associated groundwater chemistry. The combination of the VES data with the borehole data provided useful information on subsurface hydrogeologic conditions. The vestige of an ancient river channel (e.g. oxbow lake) was identified on the resistivity profiles by the lateral continuation of a near-surface perched aquifer parallel to the river. Such a perched aquifer is typically developed in the area with a clay-rich silty surface alluvium which prohibits the infiltration of oxygen. Therefore, groundwater below the oxbow lake shows a very low nitrate concentration and Eh values under the strong anoxic condition. The distribution of water resistivity is correlated with that of measured total dissolved solids concentration in groundwater, while the earth resistivity of the aquifer shows a significant spatial variation. It is interpreted that the earth resistivity of the aquifer is mainly controlled by the soil type rather than by the water chemistry in the study area.  相似文献   

13.
王环玲  徐卫亚  童富果 《岩土力学》2006,27(Z2):331-336
泄洪雾雨作用下的边坡岩体饱和非饱和渗流问题是目前我国西南地区在建和已建高坝所面临的一个共同问题。从理论上分析了雾雨作用下饱和非饱和介质中水分运动特征;根据饱和渗流和非饱和渗流的数学模型,建立起统一的岩体饱和非饱和非稳定渗流数学模型;编制了有地表入渗作用的饱和非饱和非稳定渗流三维有限元计算程序;对有限元求解中的容水度问题、非饱和水力参数问题以及初始水头场问题作了相应的优化处理;以实际工程为例进行了饱和非饱和渗流分析,计算结果表明,比天然降雨雨强大很多的雾雨入渗会形成对边坡稳定不利的暂态饱和区,并引起地下水位的抬高;暂态饱和区的大小和地下水位的增幅取决于边坡表面的护坡效应和排水、防渗帷幕等措施,因此应该加强边坡表面的保护以及合理的设置排水、帷幕等措施,以减少入渗和地下水位的抬高。  相似文献   

14.
Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest–southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model.  相似文献   

15.
Integrated geoelectric and geochemical investigation were carried out in the Canning and adjoining areas to assess the prevailing groundwater conditions and chemical quality of groundwater. Geologically, the area is constituted of alluvial sediments of Quaternary age. Vertical electrical soundings (VES) in the area of investigation mostly show six layers consisting of top soil, saline water, clay layer, brackish water, clay layer and fresh-water bearing zone of appreciable thicknesses at depths of 137 to 182 meter at six locations and from 370 to 430 meter for other two locations under confined conditions. The result of VES studies significantly correspond with the borehole litholog and well log data. A litho-resistivity relationship is established for this area of investigation A Fence diagram is constructed to show the spatial variation of the sub-surface lithology and hydrological characteristics. Chemically the ground water is fresh and mixed cation and anion type as revealed from Piper-Trilinear diagram with TDS ranging from 699 to 1547 mg/l. The geochemical parameters like Total hardness (TH), Sodium absorption ratio (SAR), Soluble sodium percentage (SSP), Percentage of sodium (PS), Kelley’s ratio (KR), Residual sodium carbonate (RSC), Corrosivity ratio (CR), Gibbs ratios (GR), Chloro alkaline indices (CAI), Sea water contamination (SWC) are also calculated for examining the quality of groundwater in the area. The depth of occurrences of freshwater bearing ground water zones for drinking and irrigation purposes are occurring at depths from 137 meter to 430 meter in this area.  相似文献   

16.
The presence of hard rock in Mount Betung has caused the misalignment of the groundwater aquifers,and resulted in many drilling failures for groundwater.An integrated geophysics method using gravity survey and Geoelectric Vertical Electrical Soundings(VES)were conducted to study the effect of basement and hard rock on groundwater prospects.From the gravity method,38 mapping points were carried out randomly,with a distance of 1-2 km in-between.Meanwhile,from the geoelectric method,51 VES points were acquired at the foot of Mount Betung.The acquisition was conducted with a Schlumberger configuration with AB/2=1 m to 250 m.The results show the Bouguer Anomaly in the west is 50-68 mgal due to the presence of hard rock in Mount Betung.This anomaly responds to relatively shallow hard rocks near surface.Hard rocks composed of andesite and breccia normally present at the depth of 5-180 m during well construction.Resistivity isopach mapping from VES data(at AB/2=50 m,100 m,and 150 m)shows the dominant constituents of hard rock.Fractures in hard rock contribute to secondary porosity,which could be a prospect zone that transmit groundwater.This finding shows that the fractures are randomly scattered,causing several well failures that have been worked.Furthermore,the fractures in the hard rock at the foot of Mount Betung acts as conduits between recharge at Mount Betung and the aquifer in the Bandar Lampung Basin.  相似文献   

17.
Geophysical investigation using Vertical Electrical Sounding (VES), Electrical Resistivity Tomography (ERT) and Seismic Refraction at a proposed conference center site along Ajibode-Labani road, Ibadan, southwestern Nigeria has been carried out. The investigation aims at characterizing and delineating the subsurface strata to understand the weathered profile at the site. Understanding the weathered profile is essential in determining the suitability of the site for engineering construction of the future conference center. A total of 25 VES and 10 ERT profiles were acquired in a systematic grid pattern using both Schlumberger andWenner configurations with Allied omega terrameter. TheVES data were processed and analyzed using WinResist and the ERT data were inverted using RES2DINV. The data were combined to form a 3-D data set of the site and RES3DINV was used to produce the depth slices. Seismic refraction data were also acquired with an ABEM seismograph and processed using SeisImager and Fajseis software. Seismic data were used in understanding the velocity distribution and thickness. The results of VES, ERT and seismic refraction show good correlation. Four sub-surface layers were delineated: top layer of reworked sand, clayey sand/ lateritic hard pan, clay/ sandy clay and fracture/ fresh basement. The 3-D model permits a pictorial view of the sub-surface in relation to materials that overlie the basement. The thickness of unconsolidated materials to bedrock varies from 2.7 m to 12.2 m which revealed inhomogeneity in weathering under the shallow sub-surface. It is found that the integrated geophysical tool is well suited to characterize and delineate sub-surface structure (weathered profile) for engineering site characterization.  相似文献   

18.
Identifying a good site for groundwater exploration in hard rock terrain is a challenging task. In hard rocks, groundwater occurs in secondary porosity developed due to weathering, fracturing, faulting, etc., which is highly variable within short distance and contributing to near-surface inhomogeneity. In such situations topographic, hydrogeological and geomorphological features provide useful clues for the selection of suitable sites. Initially, based on satellite imagery, topographical, geomorphological and hydrogeological features, an area of about 149 km2 was demarcated as a promising zone for groundwater exploration in the hard rock tract of Seethanagaram Mandal, Vizianagaram District, Andhra Pradesh, India. A total of 50 Vertical Electrical Soundings (VES) were carried out using Wenner electrode configuration. An interactive interpretation of the VES data sharpened the information inferred from geomorphological and hydrogeological reconnaissance. Ten sites were recommended for drilling. Drilling with Down-The-Hole Hammer (DTH) was carried out at the recommended sites down to 50 to 70 m depths. The interpreted VES results matched well with the drilled bore well lithologs. The yields of bore wells vary from 900 to 9000 liters per hour (lph).  相似文献   

19.
The Guangxi area is famous for its high degree of karstification due to a long period of groundwater erosion and the development of fracture networks. Karst collapse appeared during the mining process and caused many environmental problems. Applying electrical resistivity imaging (ERI) is the most cost-effective method to study the characteristic of the subsurface karst environment. In this area, more than 24 km of ERI profiles around a mining area is carried out to present the development of karst which will be used to evaluate the effects on the ground water and the surrounding environment. The area represents a classical limestone rock which is of high quality and is used for cement production. In this study, the ERI is used to determine the geometry of the karst range at depth. The results are in good agreement with drilling experiments. The ERI survey provided near-surface resistivity information, which is very useful for establishing the geometry and the position of potential karst.  相似文献   

20.
Niger is a landlocked African country and the only source of surface water is the Niger River which flows in the western part of Niger and only few villages near to the river gets benefited from it, leaving most of the areas dependent on groundwater solely. The groundwater resources in Niger are mainly used for drinking, livestock and domestic needs. It can be observed that the water exploitation is minimal there due to several factors like undeveloped areas, less population, limited wells, rain-fed irrigation, etc. The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey of Niger. Twelve VES surveys, each of AB spacing 400 m were carried out in lateritic and granitic rock formations with a view to study the layer response and to delineate the potential zones. Potential aquifer zones were at shallow depth ranging from 10 to 25 m for the drilled borehole depth of 80–85 m in every village. Analysis of the result showed a good correlation between the acquired data and the lithologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号