首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

2.
The thermal waters at the Heybeli (K?z?lkirse) low-temperature geothermal field located in the Afyonkarahisar Province (western Turkey) are discharged from Paleozoic recrystallized limestone. The temperature, specific electrical conductivity, and pH values of the thermal waters are within the range of 28.9 to 54.7 °C, 587 to 3580 μS/cm, and 6.32 to 7.37, respectively. The Heybeli geothermal system is fed by meteoric waters. The waters are heated at depth by high geothermal gradient caused by the neotectonic activity in the deep and ascend to the surface through fractures and faults by convection. The thermal waters are of Na-Ca-HCO3-SO4 type and their chemical composition of the waters is mainly controlled by water-rock interaction and mixing processes. The δ18O, δ2H and tritium compositions show that the thermal waters are of meteoric origin and the residence time at the reservoir is longer than 50 years. Isotope data (δ34S and δ13C) indicate recrystallized limestones as origin of CO2 and structural substitution of sulfate into marine carbonates (CAS) as origin of sulfur. Chemical, \( {\updelta}^{18}{\mathrm{O}}_{\left({\mathrm{SO}}_4-{\mathrm{H}}_2\mathrm{O}\right)} \) isotope geothermometers and mineral equilibrium diagrams applied to thermal waters gave reservoir temperatures between 62 and 115 °C. Saturation index calculations show that the most expected minerals causing scaling at outflow conditions during the production and utilization of Heybeli geothermal waters are calcite, aragonite, dolomite, quartz, and chalcedony.  相似文献   

3.
Niutuozhen geothermal field is located in the Jizhong graben, belonging to the northern part of Bohai Bay Basin in North China. Chemical and isotopic analyses were carried out on 14 samples of the geothermal fluids discharged from Neogene Minghuazhen (Nm), Guantao (Ng), and Jixianian Wumishan (Jxw) formations. The δ2H and δ18O in water, δ13C in CH4, δ13C in CO2, and 3He/4He ratio in the gases were analyzed in combination with chemical analyses on the fluids in the Niutuozhen geothermal field. The chemical and isotopic compositions indicate a meteoric origin of the thermal waters. The reservoir temperatures estimated by chemical geothermometry are in the range between 60 and 108 °C. The results show that the gases are made up mainly by N2 (18.20–97.42 vol%), CH4 (0.02–60.95 vol%), and CO2 (0.17–25.14 vol%), with relatively high He composition (up to 0.52 vol%). The chemical and isotopic compositions of the gas samples suggest the meteoric origin of N2, predominant crustal origins of CH4, CO2, and He. The mantle-derived He contributions are calculated to be from 5 to 8% based on a crust–mantle binary mixing model. The deep temperatures in the Jxw reservoir were evaluated based on gas isotope geothermometry to be in the range from 141 to 165 °C. The mantle-derived heat fraction in the surface heat flow is estimated to be in the range of 48–51% based on 3He/4He ratios.  相似文献   

4.
This study investigates the origin and chemical composition of the thermal waters of Platystomo and Smokovo areas in Central Greece as well as any possible relationships of them to the neighboring geothermal fields located in the south-eastern part of Sperchios basin. The correlations between different dissolved salts and the temperature indicate that the chemical composition of thermal waters are controlled by, the mineral dissolution and the temperature, the reactions due to CO2 that originates possibly by diffusion from the geothermal fields of Sperchios basin and the mixing of thermal waters with fresh groundwater from karst or shallow aquifers. Two major groups of waters are recognized on the basis of their chemistry: thermal waters of Na–HCO3–Cl type and thermal waters mixed with fresh groundwater of Ca–Mg–Na–HCO3 type. All thermal waters of the study area are considered as modified by water–rock interaction rainwater, heated in depth and mixed in some cases with fresh groundwater when arriving to the surface. Trace elements present low concentrations. Lithium content suggests discrimination between the above two groups of waters. Boron geochemistry confirms all the above remarks. Boron concentration ranges from 60 μg L?1 to 10 mg L?1, while all samples’ constant isotopic composition (δ11B ≈ 10 ‰) indicates leaching from rocks. The positive correlation between the chemical elements and the temperature clearly indicates that much of the dissolved salts are derived from water–rock interactions. The application of geothermometers suggests that the reservoir temperature is around 100–110 °C. Chalcedony temperatures are similar to the emergent temperatures and this is typical of convective waters in fault systems in normal thermal gradient areas.  相似文献   

5.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

6.
The Kozakli–Nev?ehir geothermal field extends a long a NW–SE direction at SE of the Centrum of Kozakli. The area is not rugged and average elevation is 1,000 m. The Kozanözü Creek flows towards north of the area. In the Kozakli thermal Spa area, thermal waters are manifested along a valley with a length of 1.5 km and 200 m width. In this resort some hot waters are discharged with no use. The thermal water used in the area comes from wells drilled by MTA. In addition, these waters from wells are also utilized by hotels, baths and motels belonging to City Private Management, Municipality and private sector. The measured temperature of Kozakli waters ranges from 43–51°C in springs and 80–96°C in wells. Waters are issued in a wide swampy area as a small group of springs through buried faults. Electrical conductivity values of thermal spring and well waters are 1,650–3,595 μS/cm and pH values are 6.72–7.36. Kozakli cold water has an electrical conductivity value of 450 μS/cm and pH of 7.56. All thermal waters are dominated by Na+ and Cl–SO4 while cold waters are dominated by Ca+2 and HCO3 ?. The aim of this study was to investigate the environmental problems around the Kozakli geothermal field and explain the mechanisms of karstic depression which was formed by uncontrolled use of thermal waters in this area and bring up its possible environmental threats. At the Kozakli geothermal field a sinkhole with 30 m diameter and 15 m depth occurred in January, 17th 2007 at the recreation area located 20 m west of the geothermal well which belongs to the government of Nev?ehir province. The management of the geothermal wells should be controlled by a single official institution in order to avoid the creation of such karstic structures affecting the environment at the source area.  相似文献   

7.
Tekkehamam geothermal field is located in the South of Menderes Graben (Aegean region) and is one of the most important geothermal sites of Western Anatolia. Umut geothermal field is a part of the Tekkehamam field. This study was conducted in order to determine the origin and hydrogeochemical properties of the geothermal waters. For this purpose, sampling was done in order to check the chemistry of the water, and 18O, 2H isotope analyses done at four wells, nine natural springs and three cold water sources. According to the results of the chemical analysis, the geothermal waters were determined to be of Na + K-SO4 type. Additionally, 14C and 3H analyses were done in selected well and spring waters for the purpose of age determination of groundwater; most of the waters were determined to be submodern. Geothermometer calculations show that the reservoir temperature for the Umut geothermal field ranges between 148 and 180 °C. Stable isotope results indicate that Umut geothermal waters are meteoric in origin. Mixing between shallow and deep waters is the dominant subsurface process that determines the physical and chemical character of the waters.  相似文献   

8.
We present new helium isotope data from the Macdonald seamount (Austral chain). The helium isotopic ratio varies from 4He/3He=45 000 (R/Ra=16.0) to 200 170 (R/Ra=3.6). The helium content is between 1.5×10?8 and 1.1×10?5 ccSTP/g. These helium results show clearly the presence of primitive mantle material in the source of the Austral chain. Macdonald has the lowest 4He/3He ratio among the Polynesian submarine volcanoes, except Hawaii (Loihi). The simplest explanation for the primitive helium signature is the presence under Macdonald of a mantle plume that derives either from the 670 km or 2900 km boundary layers, or, eventually, from the top of a large mantle dome resulting from a stratified two-layer convection. This plume contains less-degassed material with low 4He/3He ratio. To cite this article: M. Moreira, C. Allègre, C. R. Geoscience 336 (2004).  相似文献   

9.
Geothermal water is plentiful in Changbai Mountain region, northeastern China, due to the volcanic activities and widespread faults. For the exploration of geothermal resources, this study uses quartz and cation geothermometer to estimate the temperatures of the geothermal reservoir and uses the tubular models to evaluate the thermal gradient. The hydrogeochemical characteristics of the geothermal resources were also evaluated by hydrogeochemical analysis. The results showed that the geothermal reservoir temperatures of the four major thermal springs in Changbai Mountain region range from 72 to 169 °C. The average geothermal reservoir temperatures of Jinjiang hot springs, Changbai hot springs I, Xianrenqiao hot springs, and Changbai hot springs II are 129.25, 169, 89, and 73.67 °C, respectively. The geothermal gradient values of the four major thermal springs have different characteristics. The geothermal gradient values of Jinjiang hot springs and Changbai hot springs I are 4.6 and 3.1 °C/100 m, respectively. The geothermal gradient values of Xianrenqiao thermal springs and Changbai thermal springs II are both lower than 1.5 °C/100 m, with the values of 1.1 and 1.4 °C/100 m. And the geothermal gradients are influenced by Changbai Mountain Tianchi volcano. In addition, the water chemical analyses showed that the geothermal water types are HCO3-Na with higher concentrations of Na+, Cl?, SO4 2?, TDS, and HCO3 ? than the non-thermal waters, which suggested a deep and long water cycle of the thermal water, and therefore a sufficient water-rock interaction.  相似文献   

10.
This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 °C and the hot waters from 32.1 to 68.2 °C. All waters exhibited a near-neutral pH of 6.0–7.6. The thermal waters had a high total dissolved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0–852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca–Na–SO4 type (Hammam Righa) and cold waters in the recharge zone of the Ca–Na–HCO3 type (Zaccar Mount). Reservoir temperatures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95 °C for HR4, HR2, and HR1, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1–2.2 km. The hot waters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca–Na–SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich groundwater, resulting in waters that plot in the immature water field in the Na–K–Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 < R < 29.2 %. We summarize these results with a geothermal conceptual model of the Hammam Righa geothermal field.  相似文献   

11.
The reservoir temperature and conceptual model of the Pasinler geothermal area, which is one of the most important geothermal areas in Eastern Anatolia, are determined by considering its hydrogeochemical and isotope properties. The geothermal waters have a temperature of 51 °C in the geothermal wells and are of Na–Cl–HCO3 type. The isotope contents of geothermal waters indicate that they are of meteoric origin and that they recharge on higher elevations than cold waters. The geothermal waters are of immature water class and their reservoir temperatures are calculated as 122–155 °C, and their cold water mixture rate is calculated as 32%. According to the δ13CVPDB values, the carbon in the geothermal waters originated from the dissolved carbon in the groundwaters and mantle-based CO2 gases. According to the δ34SCDT values, the sources of sulfur in the geothermal waters are volcanic sulfur, oil and coal, and limestones. The sources of the major ions (Na+, Ca2+, Mg2+, Cl?, and HCO3 ?) in the geothermal waters are ion exchange and plagioclase and silicate weathering. It is determined that the volcanic rocks in the area have effects on the water chemistry and elements like Zn, Rb, Sr, and Ba originated from the rhyolite, rhyolitic tuff, and basalts. The rare earth element (REE) content of the geothermal waters is low, and according to the normalized REE diagrams, the light REE are getting depleted and heavy REE are getting enriched. The positive Eu and negative Ce anomalies of waters indicate oxygen-rich environments.  相似文献   

12.
Thermal waters at the Godavari valley geothermal field are located in the Khammam district of the Telangana state, India. The study area consists of several thermal water manifestations having temperature in the range 36–76 °C scattered over an area of ~35 km2. The thermal waters are Na–HCO3 type with moderate silica and TDS concentrations. In the present study, detailed geochemical (major and trace elements) and isotope hydrological investigations are carried out to understand the hydrogeochemical evolution of these thermal waters. Correlation analysis and principal component analysis (PCA) are performed to classify the thermal waters and to identify the different geochemical processes controlling the thermal water geochemistry. From correlation matrix, it is seen that TDS and EC of the thermal springs are mainly controlled by HCO3 and Na ions. In PCA, thermal waters are grouped into two distinct clusters. One cluster represents thermal waters from deeper aquifer and other one from shallow aquifer. Lithium and boron concentrations are found to be similar followed by rubidium and caesium concentrations. Different ternary plots reveal rock–water interaction to be the dominant mechanism for controlling trace element concentrations. Stable isotopes (δ18O, δ2H) data indicate the meteoric origin of the thermal waters with no appreciable oxygen-18 shift. The low tritium values of the samples originating from deeper aquifer reveal the long residence time (>50 years) of the recharging waters. XRD results of the drill core samples show that quartz constitutes the major mineral phase, whereas kaolinite, dolomite, microcline, calcite, mica, etc. are present as minor constituents. Quartz geothermometer suggests a reservoir temperature of 100 ± 20 °C which is in good agreement with the values obtained from K–Mg and Mg-corrected K–Mg–Ca geothermometers.  相似文献   

13.

A study of thirteen geothermal springs located in the geothermal field of Guelma, northeastern Algeria, was conducted. Samples were collected during the period between January 2014 and February 2016. Geochemical processes responsible for the chemical composition of thermal and mineralized water were evaluated. The hydrochemical analysis shows that the thermal waters are characterized by the presence of two different chemical facies, the first type SO4–Ca in the east, west and south of Guelma, the second type HCO3–Ca in the south. This analysis also attributed to sodium, chlorides, and sulfates to an evaporitic terrigenous origin by the molar ratio Sr2+/Ca2+. The thermal spring waters from Guelma geothermal system have a meteoric origin, and all samples are immature with strong mixing between hot and shallow waters with 19–38.5% rate of mixing. The silica geothermometer shows that these thermal waters have a temperature varying from 84 to 122 °C and that the water came from a depth of 2100–3000 m through a fault system that limits the pull-apart basin of Guelma. Potential environmental effluent from thermal spas could pollute in both the irrigation and drinking waters, and which imposes danger on the health of the inhabitants of the region.

  相似文献   

14.
The paper presents data on the composition of a gas phase of underground fluids in the East Carpathian region, including 3He/4He, 40Ar/36Ar, and 4He/20Ne ratios. The argon isotope composition of these gases was used to estimate the fractions of atmospheric Aratm and radiogenic 40Arrad formed in the rocks, N2/Aratm ratio, and to reveal the admixture of nonatmogenic (“excess”) nitrogen in most samples. The CO2 content in gases positively correlates with the fraction of mantle component in fluid helium. At the same time, the CO2 content shows a negative correlation with the total helium (and light 3He enriching mantle derivatives), thus excluding the simultaneous influx of CO2 and helium from a common mantle source in the fluids. A wide spectrum of 3He/4He = R in gases of the region spanning three orders of magnitude confirms the concept of mixing of the crustal and mantle components in the helium. However, even gases with similar R values show a wide scatter of He concentrations. This is mainly caused by the additional influx of other gases: CH4 formed during OM transformation or CO2 released during the thermal metamorphism of carbonate sequences. Correlation of the CH4/3He ratio and the helium isotope composition in the Carpathian gases indicates the crustal origin of hydrocarbons, which formed economic gas pools in the Ciscarpathian Trough and the adjacent part of the Folded Carpathians. Lateral chemical and isotope variations revealed in the underground fluids are related to the tectonic zoning of the region. The helium isotope variations are also consistent with the geodynamic setting of the region (thinning of the crust and lithosphere towards the Pannonian Basin, growth of the background conductive heat flow and corresponding ascent of isotherms). In combination with geothermal data, they reflect specifics of the mantle heat-and-mass flow discharge.  相似文献   

15.
江西省横迳温泉区地热气体地球化学   总被引:2,自引:0,他引:2  
孙占学  高柏  刘金辉 《现代地质》2004,18(1):116-120
从赣南横迳温泉区采集10个水样并分析了温泉及冷泉的水化学成分,认为热水起源于大气降水补给。在此基础上,还在温泉区采集了4个气样,测定了气体组分的含量及氦同位素.以及CO2和CH4的碳同位素。研究结果表明:横迳地区温泉气中CO2的含量很高(>96%),δCCO2较重(-4.43‰~-5.50‰),属幔源CO2;He同位素特征值(R/Ra)变化于1.36~2.11之问.均大于1,有幔源He的加入;本区温泉气的的组合类型为二氧化碳幔源温泉气,从整体上来说属于幔源无机成因气,是地幔脱气的产物。  相似文献   

16.
The activities of the most common, naturally occurring radionuclides 238U, 226Ra, 210Pb, 228Ra, 228Th, and 40K were measured by gamma-ray spectrometry in samples from reservoir rocks, geothermal fluids, and mineral precipitates at the geothermal research site Groß Schönebeck (North German Basin). Results demonstrated that the specific activity of the reservoir rock is within the range of the mean concentration in the upper earth crust of <800 Bq/kg for 40K and <60 Bq/kg for radionuclides of the 238U and 232Th series, respectively. The geothermal fluid showed elevated activity concentrations (up to 100 Bq/l) for 226Ra, 210Pb, and 228Ra, as compared to concentrations found in natural groundwater. Their concentration in filter residues even increased up to 100 Bq/g. These residues contain predominantly two different mineral phases: a Sr-rich barite (Sr, BaSO4) and laurionite (PbOHCl), which both precipitate upon cooling from the geothermal fluid. Thereby they presumably enrich the radionuclides of Ra (by substitution of Ba) and Pb. Analysis of these precipitates further showed an increased 226Ra/228Ra ratio from around 1–1.7 during the initial months of fluid production indicating a change in fluid composition over time which can be explained by different contributions of stimulated reservoir rock areas to the overall produced fluid.  相似文献   

17.
Ground waters in a Precambrian granitic batholith at the Whiteshell Nuclear Research Establishment (WNRE) in Pinawa, Manitoba contain between 5 × 10?5 and 10?1 cc STP/gH2O of radiogenic helium-4 but have relatively uniform 3He/4He ratios of between 0.6 × 10?8 and 2.3 × 103. The highest helium samples also contain radiogenic 21,22Ne produced by (α,n) or (n,α) reactions with other isotopes. As much as 1.8 × 10?9ccSTP/gH2O of excess 21Ne and 3.8 × 10?9ccSTP/gH2O of excess 22Ne have been measured. Helium and 21Ne ages of these ground waters, calculated on the basis of known crustal production rates of 4He and 21Ne, are unreasonably high (up to 2 × 105 years) and incompatible with the 14C ages and other isotopic and hydrogeologic data. Uranium enrichment in the flow porosity of the granite may dominate 4He and 21,22Ne production in this granite and mask the contributions from more typical U and Th concentrations in the rock matrix.At the Chalk River Nuclear Laboratories in Ontario helium concentrations in ground waters in a Precambrian monzonitic gneiss range from 1.5 × 10?7 to 8.7 × 10?4ccSTP/gH2O with the 3He/4He ratios ranging from 2.0 × 10?3 to 1.5 × 10?7. The highest helium concentrations may be attributable to the presence of a thick uraniferous pegmatite vein and yield helium ages more than two orders of magnitude higher than the 14C ages. Application of He age dating equations to ground waters from Precambrian granitic rocks requires knowledge of the nature of uranium and thorium enrichment in the subsurface in order to select appropriate values for porosity and uranium and thorium concentration in the rock.  相似文献   

18.
《Applied Geochemistry》1996,11(3):471-479
Thermal waters with discharge temperatures ranging from 32 to 70°C are being discharged along the Gulf of Suez (Egypt) from springs and shallow artesian wells. A comprehensive chemical and isotopic study of these waters supports previous suggestions that the waters are paleometeoric waters from the Nubian sandstone aquifer. The chemical and isotopic compositions of solutes indicate possible contributions from Tertiary sedimentary aquifer rocks and windblown deposits (marine aerosols and/or evaporite dust) in the recharge area. There is no chemical or isotopic evidence for mixing with Red Sea water. Gas effervescence from the Hammam Faraoun thermal water contains about 4% CH413C = −32.6‰) and 0.03% He having an isotopic ratio consistent with a mixture of crustal and magmatic He (3He/4He = 0.26 Re). Geothermometers for the thermal waters indicate maximum equilibration temperatures near 100°C. The waters could have been heated by percolation to a depth of several km along the regional geothermal gradient.  相似文献   

19.
The present study highlights the first evidence of hydrothermal mineral Thenardite (Na2SO4) from Puga geothermal area, North-western Himalayan belt in Ladakh Geothermal Province, India, which is unequivocal evidence for the presence of high-temperature hydrothermal fluid activity from one of the thickest crust areas of the Earth. The Puga geothermal belt illustrates a fault-bounded hydrothermal system with a clearly defined conductive zone, coinciding with Kiagar Tso fault typically exemplifying a shallow-level medium enthalpic geothermal reservoir. The hydrogeochemistry suggests that thermal and non-thermal waters are of Na-Cl-HCO3 and Ca-Mg-HCO3 type, respectively, with neutral to near alkaline pH. The silica and cation geothermometry reveal sub-surface temperatures around 150 °C and 250 °C, respectively, at shallow depth; however, >250 °C is anticipated at the deepest levels (~3 km). Stable isotope (δD and δ18O) studies explicate depletion of isotopic content for thermal waters over Puga river water and radiogenic isotope (3H) suggests matured thermal waters with ongoing water-rock interactions. The recharge altitude estimation and physiographic studies put forth that geothermal reservoir is recharged with the ice masses located at an altitude of 6458 m above mean sea level (msl) in the west of Puga valley, probably from the highest peak of Polokong La mountain. The two key processes participating in regulation of proportions of the dissolved salts in the thermal waters are silicate weathering and ion-exchange kinetics. The powder X-ray diffraction study reveals a major occurrence of hydrothermal mineral thenardite in the hot spring deposits for the first time along with huge encrustations of trona, borax, calcite and elemental sulfur. The high-temperature fluids encounter thenardite, pyrite, and jarosite-bearing minerals in basement rock causing enrichment of SO42− and Cl in geothermal waters. The temperature-dependent speciation modelling (50 °C–200 °C) for major ion Na+ reveals the composition of the reservoir fluid (~150 °C): Na+ > NaCO3 > NaSO4 > NaHCO3 > NaF > NaOH. A conceptual evolution model of thermal waters involving the recharge-deep circulation-mixing-discharge of thermal springs is hence put forth in the study using various hydrogeochemical insights.  相似文献   

20.
Geochemical investigations were carried out to define the origin of the low- to moderate-temperature thermal waters feeding the Monfalcone springs in northern Italy. Chemical data indicate that waters approach the composition of seawater. Mixing processes with cold low-salinity waters are highlighted. The δ18O and δD values are in the range ?5.0 to ?6.4 ‰, and ?33 to ?40 ‰, respectively, suggesting the dilution of the saline reservoir by karst-type freshwaters. A surplus of Ca2+ and Sr2+ ions with respect to a conservative mixing is ascribed to diagenetic reactions of the thermal waters with Cretaceous carbonates at depth. The measured Sr isotopic composition (87Sr/86Sr ratio) ranges between 0.70803 and 0.70814; after correction for the surplus Sr, a 87Sr/86Sr ratio indicating Miocene paleo-seawater is obtained. The dissolved gases indicate long-lasting gas–water interactions with a deep-originated gas phase of crustal origin, dominated by CO2 and marked by a water TDIC isotopic composition in the range ?5.9 to?8.8 and helium signature with 0.08?<?R/Ra?<?0.27, which is a typical range for the crust. A possible scenario for the Monfalcone thermal reservoir consists of Miocene marine paleowaters which infiltrated through the karstic voids formed within the prevalently Cretaceous carbonates during the upper Eocene emersion of the platform, and which were entrapped by the progressive burial by terrigenous sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号