首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
使用1979—2015年欧洲长期天气预报中心所提供的ERA-Interim再分析资料和中国气象局上海台风研究所整编的西北太平洋热带气旋(TC)最佳路径资料,分析了7—8月东亚高空纬向风的季节内振荡(ISO)信号特征及其与登陆中国大陆热带气旋(TC)的关系。结果表明:(1)200 hPa纬向风在副热带、中纬度地区季节内振荡显著,尤其是在纬向西风带中,有两个南北分布的大值中心,方差贡献均超过50%。(2)基于东亚高空纬向风的ISO和EOF典型空间模定义的西风指数(EAWI),可以用来描述东亚高空纬向西风在ISO尺度上的经向移动。(3)在西风指数的ISO负位相期间,登陆中国东南沿岸22 °N以北的TC增多;反之减少。在西风急流出口南侧的副热带区域,200 hPa ISO纬向风向北移动,使纬向西风位置偏北,出现东风异常,从而使西风减弱;TC引导气流为向西的异常,有利于TC登陆中国大陆偏北沿岸;同时有异常的ISO纬向异常东风切变,有利于TC登陆过程的维持。(4)在西风指数的ISO负位相期间,在对流层高层西风急流出口区向南输送的天气尺度的E矢量,在TC登陆地区,出现异常扰动涡度通量的辐合,引起了该区域的西风减弱。   相似文献   

2.
Storm tracks play a major role in regulating the precipitation and hydrological cycle in midlatitudes. The changes in the location and amplitude of the storm tracks in response to global warming will have significant impacts on the poleward transport of heat, momentum and moisture and on the hydrological cycle. Recent studies have indicated a poleward shift of the storm tracks and the midlatitude precipitation zone in the warming world that will lead to subtropical drying and higher latitude moistening. This study agrees with this key feature for not only the annual mean but also different seasons and for the zonal mean as well as horizontal structures based on the analysis of Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model simulations. Further analyses show that the meridional sensible and latent heat fluxes associated with the storm tracks shift poleward and intensify in both boreal summer and winter in the late twenty-first century (years 2081?C2100) relative to the latter half of the twentieth century (years 1961?C2000). The maximum dry Eady growth rate is examined to determine the effect of global warming on the time mean state and associated available potential energy for transient growth. The trend in maximum Eady growth rate is generally consistent with the poleward shift and intensification of the storm tracks in the middle latitudes of both hemispheres in both seasons. However, in the lower troposphere in northern winter, increased meridional eddy transfer within the storm tracks is more associated with increased eddy velocity, stronger correlation between eddy velocity and eddy moist static energy, and longer eddy length scale. The changing characteristics of baroclinic instability are, therefore, needed to explain the storm track response as climate warms. Diagnosis of the latitude-by-latitude energy budget for the current and future climate demonstrates how the coupling between radiative and surface heat fluxes and eddy heat and moisture transport influences the midlatitude storm track response to global warming. Through radiative forcing by increased atmospheric carbon dioxide and water vapor, more energy is gained within the tropics and subtropics, while in the middle and high latitudes energy is reduced through increased outgoing terrestrial radiation in the Northern Hemisphere and increased ocean heat uptake in the Southern Hemisphere. This enhanced energy imbalance in the future climate requires larger atmospheric energy transports in the midlatitudes which are partially accomplished by intensified storm tracks. Finally a sequence of cause and effect for the storm track response in the warming world is proposed that combines energy budget constraints with baroclinic instability theory.  相似文献   

3.
对2018年8月28日北京首都航空公司CBJ5759航班在中国澳门国际机场发生重着陆事件分析结果,显示:(1)机场位于低空切变线南侧,低空西南急流与海陆地形辐合作用下形成的暖区局地对流引发分散性短时强降水和弱雷暴;对流北侧突然增强的偏南风使机场跑道附近顺风增加,引发低空风切变;(2)高分辨率数值模拟结果表明低空风切变发生时段内存在西南急流脉动,急流北侧的风场由西南风转为偏南风,促使海陆边界的热力和动力不稳定条件加强,有利于局地对流系统发展和其辐散出流增强,加速边界层内风场变化;(3)当飞机在下降过程中经过对流系统前侧激发的偏南风急流区时,水平风的垂直切变形成的顺风切变大于垂直风变化,增加的顺风使飞机空速减小,导致飞机升力减小并造成重着陆;(4)此次事件中天气系统的变化通过影响对流的发展间接促进低空风切变的发生,因此可在对沿海机场的低空风临近预报时通过加强对海上风场变化的监测来预估一定风险。  相似文献   

4.
Over the tropics,convection,wind shear(i.e.,vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves.During the summer monsoon season(June-August) over the Indian subcontinent,convection and wind shear coexist.To determine the dominant source of gravity waves during monsoon season,an experiment was conducted using mesosphere-stratosphere-troposphere(MST) radar situated at Gadanki(13.5 N,79.2 E),a tropical observatory in the southern part of the Indian subcontinent.MST radar was operated continuously for 72 h to capture high-frequency gravity waves.During this time,a radiosonde was released every 6 h in addition to the regular launch(once daily to study low-frequency gravity waves) throughout the season.These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves.Data available from collocated instruments along with satellite-based brightness temperature(TBB) data were utilized to characterize the convection in and around Gadanki.Despite the presence of two major sources of gravity wave generation(i.e.,convection and wind shear) during the monsoon season,wind shear(both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales.  相似文献   

5.
The midlatitude westerlies are one of the major components of the global atmospheric circulation. They play an important role in midlatitude weather and climate, and are particularly significant in interpreting aeolian sediments. In this study, we analyzed the behavior and the possible mechanism involved in the change of the westerlies, mainly in terms of the jet stream position, in the mid-Pliocene warm period(3.3 to 3.0 million years ago) using simulations of 15 climate models from the Pliocene Model Intercomparison Project(Plio MIP). Compared to the reference period, the mid-Pliocene midlatitude westerlies generally shifted poleward(approximately 3.6 of latitude in the Northern Hemisphere and 1.9 of latitude in the Southern Hemisphere at 850 h Pa level) with a dipole pattern. The dipole pattern of the tropospheric zonal wind anomalies was closely related to the change of the tropospheric meridional temperature gradient as a result of thermal structure adjustment.The poleward shift of the midlatitude westerly jet corresponded to the poleward shift of the mean meridional circulation.The sea surface temperatures and sea ice may have affected the simulated temperature structure and zonal winds, causing the spread of the westerly anomalies in the mid-Pliocene between the atmosphere-only and coupled atmosphere–ocean general circulation model simulations.  相似文献   

6.
The NCEP Climate Forecast System (CFS) with the relaxed Arakawa Schubert (RAS, hereafter referred to as CTRL) convection scheme of Moorthi and Suarez exhibits better performance in representing boreal summer tropical intraseasonal variability as compared with a simulation using simplified Arakawa–Schubert scheme. The intraseasonal moist static energy (MSE) budget is analyzed in this version of the CFS model (CTRL), which produces realistic eastward and northward propagation characteristics. The moist and thermodynamic processes involved in the maintenance and propagation of the poleward moving intraseasonal oscillation (ISO) disturbances are examined here. Budget diagnostics show that horizontal MSE advection is the principal component of the budget, contributing to the poleward movement of the convection. The injection of MSE moistens the atmosphere north of the convective area causing the poleward movement of convection by destabilization of the atmosphere. The moistening process is mainly contributed by the climatological wind acting on the anomalous moisture gradient as confirmed from the examination of moisture advection equation. While surface enthalpy fluxes (consisting of radiative and surface turbulent heat fluxes) maintain the ISO anomalies, they oppose the MSE tendency due to horizontal advection thus regulating the poleward propagation characteristics. In addition, the model results show that wind–evaporation feedback dominates over cloud–radiation feedback for ISO propagation; this is in contrast to our estimates using the newly available European Centre for Medium Range Weather Forecasts Interim reanalysis. Sensitivity experiments suggest that intraseasonal variability in the CFS model with the RAS scheme is highly sensitive to the parameterization of both the shallow convection and the convective rain evaporation and downdrafts. Removal of these components adversely affects the propagation characteristics and greatly reduces the amplitude of intraseasonal variability. Our results support the primary importance of the moisture preconditioning ahead of the ISO and the physical relationship between moisture and precipitation. For realistic ISO simulations, models need to represent these features appropriately.  相似文献   

7.
Summary A nonlinear, forced, dissipative quasi-geostrophic, two-level -plane model of baroclinic instability is formulated. The model resolves a baroclinic zonal flow and a wave of arbitrary zonal scale. Multiple equilibrium solutions describing Hadley and eddy circulations coexist. Only the circulation with smaller thermal wind is stable. The most efficient eddy activity occurs at a zonal wavenumber close to the wavelength of maximum instability of linear baroclinic instability theory. For a wide range of forcing and dissipative parameters, the steady baroclinic zonal wind of the eddy regime is close to the critical shear of linear theory. Eddy statistics are obtained analytically in terms of the doparture of the zonally symmetric state from radiative equilibrium. A parameterization for the eddy heat transport is obtained.With 14 Figures  相似文献   

8.
A new synthesized index for estimating the hazard of both accumulated strong winds and heavy rainfall from a tropical cyclone (TC) is presented and applied to represent TC potential hazard over Southeast China. Its relationship with the East Asian westerly jet in the upper troposphere is also investigated. The results show that the new TC potential hazard index (PHI) is good at reflecting individual TC hazard and has significantly higher correlation with economic losses. Seasonal variation of TC-PHI shows that the largest TC-PHI on average occurs in July-August, the months when most TCs make landfall over mainland China. The spatial distribution of PHI at site shows that high PHI associated with major landfall TCs occurs along the southeast coast of China. An East Asian westerly jet index (EAWJI), which represents the meridional migration of the westerly jet, is defined based on two regions where significant correlations exist between TC landfall frequency and zonal wind at 200 hPa. Further analyses show that an anomalous easterly steering flow occurred above the tracks of TCs, and favored TCs making landfall along the southeast coast of China, leading to an increase in the landfall TC when the EAWJ was located north of its average latitude. Meanwhile, anomalous easterly wind shear and positive anomaly in low-level relative vorticity along TCs landfall-track favored TC development. In addition, anomalous water vapor transport from westerly wind in the South China Sea resulted in more condensational heating and an enhanced monsoon trough, leading to the maintenance of TC intensity for a longer time. All of these environmental factors increase the TC potential hazard in Southeast China. Furthermore, the EAWJ may affect tropical circulation by exciting meridional propagation of transient eddies. During a low EAWJI phase in July-August, anomalous transient eddy vorticity flux at 200 hPa propagates southward over the exit region of the EAWJ, resulting in eddy vorticity flux convergence and the weakening in the zonal westerly flow to the south of the EAWJ exit region, producing a favorable upper-level circulation for a TC making landfall.  相似文献   

9.
In a weakly nonlinear model how an initial dipole mode develops to the North Atlantic Oscillation (NAO) in a localized shifting jet under the prescribed eddy forcing is examined. It is found that the zonal structure of the eddy-driven NAO anomaly is not only dominated by the longitudinal distribution of the preexisting Atlantic storm track, but also by the initial condition of the NAO anomaly itself associated with the interaction between a localized shifting jet and a topographic standing wave over the Atlantic basin. When both the initial NAO anomaly and the eddy vorticity forcing in the prior Atlantic storm track are more zonally localized, the subsequent eddy-driven NAO anomaly can be more zonally isolated and asymmetric. But, it seems that the shape of the initial NAO anomaly associated with the latitudinal shift of a prior Atlantic jet plays a more important role in producing the zonal asymmetry of subsequent NAO patterns. The zonal asymmetry of the NAO anomaly can be enhanced as the height of topography increases. In addition, it is further found that blocking events occur easily over the Europe continent through the decaying of positive-phase NAO events. However, prior to the positive-phase NAO life cycle the variability in each of three factors: the Atlantic jet, the eddy vorticity forcing in the Atlantic storm track and the initial NAO anomaly can result in a variation in the blocking activity over the Europe sector in strength, duration, position and pattern.  相似文献   

10.
Summary The importance of horizontal and vertical advection of temperature for the Antarctic major stratospheric warming in September 2002 has been investigated, by applying the thermodynamic energy equation to ECMWF temperature and wind data. The analysis, which is carried out for the one-week period 19–26 September, shows that the large temperature increase in this period in the polar stratosphere is mainly due to horizontal advection of temperature. In addition, it has been investigated to what extent the observed temperature increase, as well as the change in the zonal wind, can be simulated with a simple conceptual model of a moving polar vortex. The model consists of a horizontal, circular vortex whose centre moves with constant meridional velocity off from the South Pole. The temperature and zonal wind fields are prescribed, stationary and zonally symmetric (relative to the vortex centre). Despite its simplicity, the model simulates several important aspects of the observations, such as the zonal-mean temperature increase and zonal-mean zonal wind reversal poleward of 60° S, and the zonal-mean temperature decrease at middle latitudes.  相似文献   

11.
Using National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) monthly reanalysis data and an extended reconstruction of the sea surface temperature data provided by National Oceanic and Atmospheric Administration, the basic characteristics of the interannual variation in the wintertime Middle East subtropical westerly jet stream (MEJ) and its possible physical factors are studied. The results show that the climatological mean MEJ axis extends southwestward-northeastward and that its center lies in the northwest part of the Arabian Peninsula. The south-north shift of the MEJ axis and its intensity show obvious interannual variations that are closely related to the El Ni?o-Southern Oscillation (ENSO) and the mid-high latitude atmospheric circulation. The zonal symmetric response of the Asian jet to the ENSO-related tropical convective forcing causes the MEJ axis shift, and the Arctic Oscillation (AO) causes the middle-western MEJ axis shift. Due to the influences of both the zonal symmetric response of the Asian jet to the ENSO-related tropical convective forcing and the dynamical role of the AO, an east-west out-of-phase MEJ axis shift is observed. Furthermore, the zonal asymmetric response to the ENSO-related tropical convective forcing can lead to an anomalous Mediterranean convergence (MC) in the high troposphere. The MC anomaly excites a zonal wave train along the Afro-Asian jet, which causes the middle-western MEJ axis shift. Under the effects of both the zonal symmetric response to the ENSO-related tropical convective forcing and the wave train along the Afro-Asian jet excited by the MC anomaly, an east-west in-phase MEJ axis shift pattern is expressed. Finally, the AO affects the MEJ intensity, whereas the East Atlantic (EA) teleconnection influences the middle-western MEJ intensity. Under the dynamical roles of the AO and EA, the change in the MEJ intensity is demonstrated.  相似文献   

12.
热带气旋登陆华南前后的强降水大尺度环境场特征   总被引:1,自引:4,他引:1       下载免费PDF全文
运用2001年和2002年7个热带气旋 (TC) 登陆华南前后的38个日降水量、NCEP/NCAR再分析资料以及卫星云图, 经普查和分析将TC造成的降水区划分为纬向型、经向型、NE—SW向型3种; 对各型高、中、低层中的主要气象因子作了详细分析, 如高层流场、中层副热带高压、低层急流和切变线或辐合线、整层水汽通量散度以及季风云涌等, 在此基础上归纳概括出了这些降水型各自前24 h的大尺度环境场特征概略模型图, 并对其强降水形成机理尽可能地给出了解释, 为TC登陆前后的超短期降水预报提供某种参考方法。  相似文献   

13.
选取江西省宜春市晴空、弱降水、强降水三类天气过程个例,结合天气形势、雷达回波、气象要素等资料,对比分析了风廓线雷达产品特征。结果表明:(1)在晴空天气背景下,风廓线雷达探测高度低,水平风速小,垂直风速正负值交替出现,大气折射率结构常数(Cn2)值最小。(2)在稳定性弱降水天气背景下,大气呈稳定状态,风廓线雷达探测高度随降水的产生而逐渐抬升,高低层有明显的风速切变,850 hPa赣南至赣东北有西南急流穿过,赣北有切变线存在,利于降水产生,垂直风速因降水影响出现朝向雷达正速度,Cn2值比晴空时大。(3)在具有产生强对流天气背景下,大气中对流强烈,风廓线雷达的水平风速增大,西南急流深厚且不断下沉,850-700 hPa有强烈的垂直切变,动力条件和水汽条件利于强降水产生,垂直风速表现为更大的朝向雷达正速度,Cn2值比弱降水时的大。  相似文献   

14.
利用1979—2008年日分辨率的向外长波辐射资料以及NCEP再分析资料,去除ENSO影响后,分析了1—3月北极涛动对热带太平洋和热带大西洋对流活动及降水的可能影响。结果表明北极涛动偏强(弱)时,热带太平洋和大西洋对流活动显著偏强(弱)。北半球热带大洋冬季平均向外长波辐射与北极涛动指数的相关系数存在两个显著负相关区:一个位于中太平洋区,大致包括13°—20°N、160°E—170°W;另外一个位于热带大西洋,显著区覆盖的范围大体包括5°—20°N、15°—70°W。这些区域的降水量也表现出显著的正相关。向外长波辐射、强对流面积指数、强对流强度指数、平均降水量等指标与北极涛动指数的相关均以冬季同期最高,随时间滞后相关迅速减弱。与此对应的对流层低层大气环流也有显著变化,850hPa风场的变化表现为热带太平洋有异常的气旋性环流,气旋中心区与显著强对流和降水异常区一致。而热带大西洋有显著的经向环流辐合和风切变,与异常对流和降水区吻合。海洋模式的模拟结果表明,与北极涛动有关联的海温分布,很大程度上与大气强迫有关,说明热带1—3月降水和对流活动与海温的关联较弱。北极涛动与热带太平洋、大西洋对流和降水活动之间主要是通过大气环流的变动产生联系的。  相似文献   

15.
李娜  冉令坤  焦宝峰  常友治  谢越 《大气科学》2022,46(6):1557-1576
本文采用位涡波作用密度和波作用方程,对一次南疆西部干旱区暴雨的组织化过程和机制进行了诊断研究,对影响暴雨对流系统组织化的关键物理过程进行了分析和讨论。位涡波作用密度耦合了多种影响对流云体演变的大气动热力扰动,能够良好描述对流系统的组织化过程。以此为基础,描述位涡波作用密度变化的波作用方程能够用来研究驱动对流系统组织化发展的物理因素。研究发现,波作用方程诊断得到的多个物理过程与扰动斜压性、扰动风切变和扰动涡度的发展演变有关,表明它们对对流组织化有重要作用,多条东西向的对流线发展为东北—西南向的带状对流系统过程中,包含强对流的维持和南北尺度的增大。对流线在东北向弱对流的发展增强与基本态气流对强对流区的热力输送引起扰动斜压性增强有关。影响对流线中部强对流的维持和南北向发展的关键过程包括:上升、下沉气流引起的热力输送导致对流线内扰动斜压性增强,扰动西风与扰动东风形成气旋性环流引起经向切变环流增强,及扰动经向风将扰动纬向风切变向对流中心区输送引起纬向切变增强、垂直环流增强。该研究表明,对流系统的组织化是大气多种动热力扰动演变和配合的结果,通过波作用演变方程能够比较清晰体现其中的关键过程,且波作用方程为波作用密度倾向,未来可探讨其对对流系统组织化的预报意义。  相似文献   

16.
In this paper, the zonal wind anomalies in the lower troposphere over the tropical Pacific during 1980–1994 are analyzed by using the observed data. The results show that during the formation of the 1982/83, 1986/87 and 1991 / 92 ENSO events, there were the larger westerly anomalies in the lower troposphere over the equatorial Pacific. Moreover, it is explained by using the correlation analyses that the westerly anomalies over the equatorial Pacific could cause the warm episodes of the equatorial central and eastern Pacific. A simple air-sea coupled model is used to discuss theoretically the dynamical effect of the observed westerly anomalies of wind stress near the sea surface of the equatorial Pacific on the ENSO cycle occurred in the period of 1981–1983. It is shown by using the theoretical calculations of the equatorial oceanic Kelvin wave and Rossby waves responding to the forcing of the observed anomalies of zonal wind stress near the sea surface of the equatorial Pacific that the westerly anomalies of wind stress near the sea surface of the equatorial Pacific make significant dynamical effect on the ENSO cycles occurred in the period of 1982–1983.  相似文献   

17.
TheWesterlyAnomaliesovertheTropicalPacificandTheirDynamicalEfectontheENSOCyclesduring1980-1994①HuangRonghui(黄荣辉),ZangXiaoyun(...  相似文献   

18.
利用1979-2017年欧洲中期天气预报中心提供的ERA-Interim再分析数据与中国气象局-上海台风研究所(China Meteorological Administration-Shanghai Typhoon Research Institute,CMA-STI)、美国联合台风警报中心(Joint Typhoo...  相似文献   

19.
The major features of the westerly jets in boreal winter, consisting of the Middle East jet stream (MEJS), East Asian jet stream (EAJS) and North Atlantic jet stream (NAJS), simulated by a newly developed climate system model, were evaluated with an emphasis on the meridional location of the westerly jet axis (WJA). The model was found to exhibit fairly good performance in simulating the EAJS and NAJS, whereas the MEJS was much weaker and indistinguishable in the model. Compared with the intensity bias, the southward shift of the WJA seems to be a more remarkable deficiency. From the perspective of Ertel potential vorticity, the profiles along different westerly jet cores in the model were similar with those in the reanalysis but all shifted southward, indicating an equatorward displacement of the dynamic tropopause and associated climatology. Diagnosis of the thermodynamic equation revealed that the model produced an overall stronger heating source and the streamfunction quantifying the convection and overturning Hadley circulation shifted southward significantly in the middle and upper troposphere. The two maximum centers of eddy kinetic energy, corresponding to the EAJS and NAJS, were reproduced, whereas they all shifted southwards with a much reduced intensity. A lack of transient eddy activity will reduce the efficiency of poleward heat transport, which may partially contribute to the meridionally non-uniform cooling in the middle and upper troposphere. As the WJA is closely related to the location of the Hadley cell, tropopause and transient eddy activity, the accurate simulation of westerly jets will greatly improve the atmospheric general circulation and associated climatology in the model.  相似文献   

20.
A sequence of numerical calculations has been made for the equilibrium balances of eddies and mean currents in open and partially blocked, periodic channels. The physical model employed is a two-layer, quasigeostrophic, wind-driven one, with important bottom friction and weak lateral friction. The resolved eddies provide the interior fluxes of momentum and potential vorticity which allow the mean state to be a balanced one. The set of calculations does not provide a parameter study as such, but does provide examples of the influences of alternative physical processes and geometrical constraints. These alternatives include the presence or absence of a partial barrier across the channel, the length of the channel, the addition of a transient component to the wind-driving, and the addition of a topographic sill across the channel gap. Particular attention is focused upon the steadily driven general circulation of a β-plane channel, because of the structural simplicity of the solution. The results may be broadly summarized as follows. The eddies are generated by a baroclinic instability of the mean flow. They act to intensity the upper layer mean jet and mean cross-jet potential vorticity gradient (through eddy horizontal Reynolds stress and relative vorticity flux divergence, respectively) and to transfer downwards mean zonal momentum, energy, and potential vorticity gradient (through eddy interfacial pressure drag, vertical pressure work, and vortex stretching flux divergence, respectively). In the case of a zonally uniform channel, the meridional heat flux is found not to conform closely to previously proposed parameterizations. The presence of a partial meridional barrier and a topographic obstacle are found to strongly influence the equilibrium solution, while neither a change in the basin length nor the presence of a transient wind component appear to importantly alter the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号