共查询到18条相似文献,搜索用时 62 毫秒
1.
集合卡尔曼滤波同化多普勒雷达资料的观测系统模拟试验 总被引:3,自引:1,他引:3
本文将集合卡尔曼滤波同化技术应用到对流尺度系统中,实施了基于WRF模式的同化单部多普勒雷达径向风和反射率因子的观测系统模拟试验,验证了其在对流尺度中应用的可行性和有效性,并对同化系统的特性进行了探讨。试验表明:WRF-EnKF雷达资料同化系统能较准确分析模式风暴的流场、热力场、微物理量场的细致特征;几乎所有变量的预报和分析误差经过同化循环后都能显著下降,同化分析基本上能使预报场在各层上都有所改进,对预报场误差较大层次的更正更为显著;约8个同化循环后,EnKF能在雷达反射率、径向风观测与背景场间建立较可靠的相关关系,使模式各变量场能被准确分析更新,背景场误差协方差在水平方向和垂直方向都有着复杂的结构,是高度非均匀、各项异性和流依赖的;集合平均分析场做的确定性预报在短时间内能较好保持真值场风暴的细节结构,但预报误差增长较快。 相似文献
2.
集合卡尔曼滤波同化探空资料的数值试验 总被引:3,自引:1,他引:3
应用集合卡尔曼滤波(Ensemble Kalman Filter;EnKF)方法,同化了2005年7月一次暴雨过程的探空观测资料,并用非静力中尺度模式MM5进行数值模拟试验。结果表明:在理想模式的假设下,即假设真实模拟和所产生的集合用的是同一个模式并有相同的初始误差,EnKF方法同化的分析结果较好。如果不运用EnKF方法同化探空观测资料,则集合预报结果和不加扰动的单个数值预报结果都没有EnKF方法同化过的好。 相似文献
3.
在基于集合卡尔曼变换(Ensemble Transform Kalman Filter,ETKF)方法的适应性观测系统的基础上,考虑湿度因子作用并增加对流层低层的大气运动信息,发展了更加适用于我国中尺度高影响天气系统敏感区识别的优化方案。针对环北京夏季暴雨和冬季降雪的高影响天气个例,分别设计4组试验进行观测敏感区识别试验,考察了优化方案目标观测敏感区识别质量,并对分析和预报结果进行了评估。结果表明:优化方案的目标观测敏感区识别效果最佳,对环北京夏季暴雨和冬季降雪天气的目标观测敏感区质量有明显改善,湿度因子可使最强观测敏感区更加集中,对夏季降水敏感区的影响比冬季降雪天气更加明显。低层大气信息的引入对最强观测敏感区的准确识别也具有重要的积极作用。目标观测敏感区的目标资料对分析和短期预报质量具有明显的正贡献。 相似文献
4.
5.
适应性观测与集合变换卡尔曼滤波方法介绍 总被引:3,自引:0,他引:3
给出适应性观测理论和集合变换卡尔曼滤波方法及其研究现状的综述。重点介绍了集合变换卡尔曼滤波方法及其相关的一些问题。在数值预报领域,一种新的途径是利用数值预报系统信息在预报时效内确定出某些区域,如果在这些区域进行补充观测,可以最有效地改进预报技能。这种方法被称为适应性或目标观测,所确定的观测区域称为敏感区,敏感区内增加观测后分析质量将得到改善,对后续的预报技能可产生最大的预期影响。目前适应性观测研究已经成为世界气象组织(WMO)组织的THORPEX计划的一个子计划。集合变换卡尔曼滤波(The Ensemble Transform Kalman Filer,简称ETKF)是一种次优的卡尔曼滤波方案,最早是作为一种适应性观测算法提出的,现在还被用于集合预报初始扰动的生成。ETKF方法不仅可以同化观测资料,而且可以估计出观测对预报误差的影响。它与其它集合卡尔曼滤波方案不同之处在于:ETKF利用集合变换和无量纲化的思想求解与观测有关的误差协方差矩阵,可以快速估计出不同附加观测造成的预报误差协方差的减少量,预报误差减少最多的一组观测所对应的区域就是所寻找的敏感区。 相似文献
6.
为检验臭氧卫星资料同化对臭氧分析场和预报场的影响,基于集合平方根滤波(ENSRF)理论,结合通用地球系统模式(CESM),构建了CESM-ENSRF同化预报系统。系统构建过程考虑了卡尔曼滤波同化中的关键问题:利用全场随机扰动对初始场加扰,结合一般协方差膨胀和松弛协方差膨胀方法实现协方差膨胀,使用五阶距离相关函数进行协方差局地化。将构建的系统用于微波临边探测器(MLS)臭氧廓线数据的同化,分析臭氧卫星资料同化对模式预报的影响。结果表明:构建的CESM-ENSRF同化系统有效实现了臭氧资料同化,臭氧卫星资料同化对臭氧分析场和预报场精度有较大改进。 相似文献
7.
针对2015年2月12—16日发生在东亚的一次预报过度的温带气旋开展了资料同化及资料影响性观测等研究。此次温带气旋的发展与各个主要数值模式的预报相差甚大,并未出现预期中的爆发性增长。针对此次过程,采用WRF模式及其变分同化系统开展了模拟与同化试验,主要同化了NCEP全球地面和高空观测资料,修正了此次温带气旋过度预报的问题。经过同化后,减弱了系统的气旋性环流,同时南北温差的减弱也导致了环境场的斜压性的减弱,使得气旋爆发性增长延后,强度减弱,更符合实际观测。与此同时,还利用WRF伴随模式WRFPLUS和观测资料影响性模式WRFDA-FSO开展了观测资料影响性的研究,并发现三类资料SOUND、SYNOP、GEOAMV在减小预报误差中的作用最大。进一步的敏感性试验表明仅同化这3种资料可以取得更为理想的预报。 相似文献
8.
集合卡尔曼滤波同化多普勒雷达资料的数值试验 总被引:25,自引:10,他引:25
利用集合卡尔曼滤波(EnKF)在云数值模式中同化模拟多普勒雷达资料,并考察了不同条件下EnKF同化方法的性能.结果显示,经过几个同化周期后,EnKF分析结果非常接近真值.单多普勒雷达资料EnKF同化对雷达位置不太敏感,双雷达资料同化结果在同化的初期阶段比单雷达资料同化结果准确.同化由反射率导出的雨水比直接同化反射率资料更有效,联合同化径向速度和雨水有利于提高同化分析效果.协方差对EnKF同化效果起着非常重要的作用,考虑模式全部预报变量与径向速度协方差的同化效果比仅考虑速度场与径向速度协方差的同化效果好.雷达资料缺值降低了同化效果,此时增加地面常规观测资料的同化可以明显提高同化分析效果.EnKF同化技术对雷达观测资料误差不太敏感.初始集合对同化分析有较大影响.EnKF同化受集合大小和观测资料影响半径.同化对模式误差较敏感.利用EnKF同化双多普勒雷达资料,分析了一次梅雨锋暴雨过程的中尺度结构.结果表明,EnKF同化技术能够从双多普勒雷达资料反演暴雨中尺度系统的动力场、热力场和微物理场,反演的风场是较准确的,反演的热力场和微物理场分布也是基本合理的.中低层切变线是此次暴雨的主要动力特征,对流云表现为低层辐合、高层辐散并有垂直上升运动伴随,其热力特征表现为低层是低压区,高层为高压区,中部为暖区而上、下部为冷区,水汽、云水和雨水分别集中在对流云体内、上升气流区和强回波区. 相似文献
9.
基于内蒙古睿图预报系统的低分辨率版本和WRFDA-FSO诊断工具,评估2021年7月现有探空和地面观测对内蒙古睿图预报系统预报的影响.该方法计算代价相对低廉,并允许根据观测变量、观测类型、气压层次、地理区域等观测的子集对观测影响进行划分.代价函数为以干总能量为度量的背景场和分析场的预报误差之间的差异.结果表明:观测影响的总体总和为负,观测对预报起正贡献作用.对12 h预报误差减小贡献最大的观测来自探空观测的动力变量(U、V风分量).而单时次单位数量平均观测影响,探空观测的贡献约为地面观测的1/2.探空观测对12 h预报误差减小从近地面层至模式层顶均保持正贡献作用,并在对流层中低层和对流层高空急流层存在两个极大值区域;地面观测在850 hPa以下低层正贡献占比明显.探空观测在被同化系统同化时均总体具有有利的影响,也反映出探空观测数据稳定、质量较高的特征;地面观测对12 h预报误差减小起正贡献作用次数最多的区域在河套地区尤为显著.同时,探讨了需进一步提高地面观测资料同化率的问题. 相似文献
10.
GRAPES区域集合预报系统应用研究 总被引:17,自引:3,他引:17
为发展GRAPES(Global and Regional Assimilation and Prediction System)区域集合预报系统(GRAPES Regional Ensemble Prediction System,GRAPES-REPS),采用集合变换卡尔曼滤波(ETKF)初值扰动方法以及多物理过程组合的模式扰动方法,基于业务区域模式GRAPES_MesoV3.3.2.4构建了区域集合预报系统,进行了连续40 d的批量试验,重点分析了ETKF初值扰动的结构及其演变特征,并通过概率预报检验方法对GRAPES-REPS进行了集合预报系统性能检验和降水预报检验,分析了该系统对强降水个例的预报效果。试验结果表明,GRAPES-REPS能产生较合理的集合预报初值扰动,扰动结构随流型依赖并对观测有较好的响应,且扰动成员相互正交。扰动总能量分析表明集合扰动能够随预报时效保持合理增长状态。集合预报检验表明集合预报结果优于控制预报,集合成员间在72 h预报时效内能保持合理的集合离散度。将该区域集合预报系统与业务上基于WRF模式的区域集合预报系统WRF-REPS进行了降水预报对比,表明GRAPES-REPS的降水预报能力表现要优于业务WRF-REPS。强降水个例分析表明集合预报能较好预报出强降水中心,预报效果明显优于控制预报。 相似文献
11.
目前国家气象中心业务GRAPES区域集合预报系统中集合变换卡尔曼滤波(ETKF)方法采用的是模拟观测信息,为进一步完善ETKF方法,拟对ETKF初值扰动通过引入真实探空观测资料,使扰动场能够代表真实观测的不确定信息,改善区域集合预报技巧。真实观测资料的引入会使得每日的观测数目和分布发生变化,这对ETKF方法而言可能会引起扰动振幅的不稳定,因此在引入真实观测资料的基础上设计了新的扰动振幅调节因子,通过格点空间中离散度和均方根误差关系来对初值扰动振幅进行自适应调整。从初值扰动结构、概率预报技巧以及降水预报效果等方面对比分析了基于模拟观测、真实观测以及真实观测结合新型调节因子的ETKF方案的差异,结果表明:真实探空资料能够有效应用于GRAPES区域集合预报系统中,真实观测资料与模拟观测资料相比较为稀疏,可以获得更大量级的初值扰动振幅;真实观测资料有助于提高区域集合的离散度,但对集合预报准确度以及概率预报结果的提高有限,对于降水预报效果提高也有限;新型的扰动振幅调节因子可以有效获得稳定的初值扰动振幅,并保持ETKF扰动结构,真实观测资料与扰动振幅自适应调节因子相结合,可以有效提高区域集合的概率预报结果,并有效提高降水预报效果。 相似文献
12.
Qian ZOU Quanjia ZHONG Jiangyu MAO Ruiqiang DING Deyu LU Jianping LI Xuan LI 《大气科学进展》2023,40(3):501-513
Based on a simple coupled Lorenz model, we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics. Four initial perturbation approaches are used in the ensemble forecasting experiments: the random perturbation(RP), the bred vector(BV), the ensemble transform Kalman filter(ETKF), and the nonlinear local Lyapunov vector(NLLV) methods. Results show that,regardless of the method used, the ensemble ave... 相似文献
13.
Initial perturbation scheme is one of the important problems for ensemble prediction. In this paper,
ensemble initial perturbation scheme for Global/Regional Assimilation and PrEdiction System (GRAPES)
global ensemble prediction is developed in terms of the ensemble transform Kalman filter (ETKF) method.A new GRAPES global ensemble prediction system (GEPS) is also constructed. The spherical simplex 14-member ensemble prediction experiments, using the simulated observation network and error characteristics of simulated observations and innovation-based in ation, are carried out for about two months. The structure characters and perturbation amplitudes of the ETKF initial perturbations and the perturbation growth characters are analyzed, and their qualities and abilities for the ensemble initial perturbations are given.
The preliminary experimental results indicate that the ETKF-based GRAPES ensemble initial perturbations could identify main normal structures of analysis error variance and reflect the perturbation amplitudes.The initial perturbations and the spread are reasonable. The initial perturbation variance, which is approximately equal to the forecast error variance, is found to respond to changes in the observational spatial variations with simulated observational network density. The perturbations generated through the simplex method are also shown to exhibit a very high degree of consistency between initial analysis and short-range forecast perturbations. The appropriate growth and spread of ensemble perturbations can be maintained up to 96-h lead time. The statistical results for 52-day ensemble forecasts show that the forecast scores ofensemble average for the Northern Hemisphere are higher than that of the control forecast. Provided that using more ensemble members, a real-time observational network and a more appropriate inflation factor,better
effects of the ETKF-based initial scheme should be shown. 相似文献
14.
15.
Using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) implemented at the Korea Meteorological Administration (KMA), the effect of doubling the ensemble size on the performance of ensemble prediction in the warm season was evaluated. Because a finite ensemble size causes sampling error in the full forecast probability distribution function (PDF), ensemble size is closely related to the efficiency of the ensemble prediction system. Prediction capability according to doubling the ensemble size was evaluated by increasing the number of ensembles from 24 to 48 in MOGREPS implemented at the KMA. The initial analysis perturbations generated by the Ensemble Transform Kalman Filter (ETKF) were integrated for 10 days from 22 May to 23 June 2009. Several statistical verification scores were used to measure the accuracy, reliability, and resolution of ensemble probabilistic forecasts for 24 and 48 ensemble member forecasts. Even though the results were not significant, the accuracy of ensemble prediction improved slightly as ensemble size increased, especially for longer forecast times in the Northern Hemisphere. While increasing the number of ensemble members resulted in a slight improvement in resolution as forecast time increased, inconsistent results were obtained for the scores assessing the reliability of ensemble prediction. The overall performance of ensemble prediction in terms of accuracy, resolution, and reliability increased slightly with ensemble size, especially for longer forecast times. 相似文献
16.
风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验I.不考虑模式误差的情形 总被引:3,自引:8,他引:3
本文在假定模式无偏差的情况下, 利用一次风暴过程的模拟多普勒雷达资料进行一系列风暴天气尺度的集合卡尔曼滤波资料同化试验, 检验集合卡尔曼滤波在风暴天气尺度资料同化方面的效果, 并验证各集合卡尔曼滤波参数对同化效果的影响。试验结果表明, 集合卡尔曼滤波能有效地应用于风暴尺度的资料同化; 40个集合成员以及6 km的局地化尺度能较好地滤除采样误差造成的虚假相关, 同时可以将观测信息传递到无观测的模式格点; 利用背景场加上空间平滑的高斯型随机扰动生成初始成员的方式较未经过平滑的方式有更好的分析效果; 背景场扰动方法能够提高样本的离散度; 只同化反射率的同化试验表明, 反射率的同化效果较明显, 也证明了集合卡尔曼滤波在非常规资料同化中的作用; 增加径向风资料同化的效果优于只进行反射率同化的结果。 相似文献
17.
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors(BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector(NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram–Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more components in analysis errors than the BVs.In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model.The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random perturbation(RP) technique, and the BV method, as well as its improved version—the ensemble transform Kalman filter(ETKF)method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme. 相似文献
18.
Bangjun CAO Fuping MAO Shuwen ZHANG Shaoying LI Tian WANG 《Journal of Meteorological Research》2019,(3):519-527
The performance of separate bias Kalman filter (SepKF) in correcting the model bias for the improvement of soil moisture profiles is evaluated by assimilating the near-surface soil moisture observations into a land surface model (LSM). First, an observing system simulation experiment (OSSE) is carried out, where the true soil moisture is known, two types of model bias (i.e., constant and sinusoidal) are specified, and the bias error covariance matrix is assumed to be proportional to the model forecast error covariance matrix with a ratio λ. Second, a real assimilation experiment is carried out with measurements at a site over Northwest China. In the OSSE, the soil moisture estimation with the SepKF is improved compared with ensemble Kalman filter (EnKF) without the bias filter, because SepKF can properly correct the model bias, especially in the situation with a large model bias. However, the performance of SepKF becomes slightly worse if the constant model bias increases or temporal variability of the sinusoidal model bias becomes large. It is suggested that the ratio λ should be increased (decreased) in order to improve the soil moisture estimation if temporal variability of the sinusoidal model bias becomes high (low). Finally, the assimilation experiment with real observations also shows that SepKF can further improve the estimation of soil moisture profiles compared with EnKF without the bias correction. 相似文献