首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究了活动区5229中的H_β耀斑和磁场的关系。所用资料为北京天文台怀柔太阳观测站1988年11月13—18日期间获得的(时值活动区5229位于E40°W40°)。按活动区磁场演化情况,考察了新浮现磁流、磁剪切和磁对消与耀斑形成的关系。 图1a-1f给出了怀柔站观测到的11个H_β耀斑及87个耀斑核在纵向磁图上的情况。磁图以等高斯线形式给出,图中虚线表示负极,实线表示正极,等高斯线由外向内分别为20,40,80,160,320,640,960,1280,1600,1920,2240,2580,2800高斯。黑色小块表示Hβ耀斑核。其中有四分之三的Hβ耀斑核离开极性反变线的距离在10弧秒之内。发生在该活动区的耀斑超过80个,而怀柔站观测的仅是很小一部分。这对于耀斑建立过程的研究是很不够的,必需补充其他天文台的资料。注意到周报上已列出该活动区的软X射线(1~8A)M1.0级以上的高能耀斑事件,将它们补充进图1,用黑色三角形表示,画其位置时考虑到耀斑、黑子及磁特征之间的关系和它们彼此之间的时间差,并按Howard和Harvey给出的较差自转公式进行了改正。10个高能耀斑事件中有6个可能与磁特征N_3,N_7和P_2的衰减(即对消,另一极性在复杂活动区中衰减不明显)有关;另外的事件可能与发生在磁特征N_2、P_2之间的磁剪切有关。  相似文献   

2.
本文比较了Krall方法和势场方法判断横场方向的优劣,得出后者比前者有更高的准确率。并且对AR_(5312)活动区1989年1月14日的耀斑和纵向电流密度之间的关系进行了分析,结果为H_β初始亮点和光球纵向电流密度极大值之间有对应关系。  相似文献   

3.
4.
Boulder88161(AR5060)黑子群是1988年所有黑子群中最大的一群,后随部分有一δ型黑子F3。图1为7月2日的白光照片。 1、光学耀斑:(1)S级小耀斑数在28日最大,之后几天逐步下降,但仍保持在每天3~5个。(2)X-射线强度与S级耀斑个数基本一致。M级事件与1,2,3级耀斑相对应。(3)射电流量曲线与耀斑的1,2,3级个数相对应。 2、黑子群的纵向磁场演化:纵向场结构变化十分明显。浮现磁通逐渐变强,梯度最大为0.4~0.5G/Km,在耀斑处为<0.35G/Km。对耀斑处磁通量逐日上升。在耀斑前几天上升很快。黑子群横向场:在3B级耀斑处横向场很弱,尤其在耀斑的位置上。而在黑子后随部分有很强的横向场存在。 3、耀斑的发生过程:7月2日的3B级耀斑约从0030UT开始,0056UT极大,约一个多小时后才消失。此处中性线扭曲,形成一种湾形结构。一条横躺的S形暗条勾出了中性线形状。另有一束很粗的暗条从这一区域出发与黑子后随部分相连。耀斑初始是由S形暗条西端开始发亮的。约5分钟后后随部分有增亮,8分钟后消失。在S形暗条处耀斑增亮达到极大,形状是沿着中性线和暗条走向的。达到最大面积时,发亮区域覆盖了S极性区。 分析:88161是一个非常活跃的新生黑子群。后随部分磁场复杂多变,而大的耀斑并没有发生在那里。其原因:(1)大耀斑不同于小耀斑,  相似文献   

5.
6.
7.
本文详细分析了1989年7月5日有连续发射的耀斑对应的活动区磁场。得出:磁场强度和黑子面积分布都有“前导大后随小”的特征;两异极黑子挤压位置的中性线呈“V”形;产生连续发射的四个耀斑核,除一个位于宁静背景上外,其余三个均位于中性线两侧;连续发射最明显的B点耀斑核位于磁剪切和磁挤压的交点以及磁场梯度最大(0.52高斯公里~(-1))的位置上。  相似文献   

8.
在太阳活动区AR5395中连续几天内存在着旋转运动,后来演化为磁场被强剪切。根据AR5395演化的分析研究,本文对该活动区产生的耀斑提出两个模型。首先,该活动区的耀斑位形是一个扭转的共生磁流管:许多磁流管的N极一端被旋转运动扭到一起,处于亚稳状态,一旦受到触发就释放出被储存的能量。随着耀斑不断产  相似文献   

9.
这群黑子于1988年4月13日出现在日面的东边缘。怀柔编号:88037; Boulder编号4990。日面位置N22,L314。其磁场极性较为复杂,17日在后随主黑子的右上方爆发一次较大的耀斑,尔后在18日、20日和21日在前导与后随之间又不断有些小的耀斑爆发.在此期间,怀柔太阳磁场望远镜取得了光球纵向磁场、光球5324A的单色象、H_β的耀斑单色像和H_β视向磁场的大量资料。 16日后随主黑子右上方有一分立的小黑子(S极),17日,耀斑就产生在它们之间(图1中的圆圈表示耀斑发生的位置)。从图2a、b可以看到,这里的极性复杂,异极性磁区互相挤压。耀斑发生在B_(11)=0的磁场中性线一侧,同样是避开了黑子的本影。这与已有的结论是相一致的。对比16日(图2a)和17日(图2b)的纵场磁图,可以看到在标有1和2的地方分别有一N极在向S极挤压。17日N极把S极分割开来。在2处,N极本来是互相连接的,但其临近的S极亦不断向其挤压渗透,耀斑前,S极把N极给断开了。在这些地方,17日UT0423时,爆发了耀斑,UT0430时,耀斑达到极大,可以看出,耀斑的亮核位于异极区挤压的前峰。耀斑发生的位置的纵场梯度为0.18G/Km。后随黑子的右上方,耀斑爆发前(图2a)其最大磁场强度为640G,爆发后(图2c)最大磁场强度为160G。这表明爆发的过程也是能量释放的过程。 虽然耀斑的单  相似文献   

10.
太阳磁场历来被视为太阳物理一个重要量。在1988年12月15日至12月25日,全国对日面活动区88184(怀柔)进行了联测,这是一个S型黑子。我们利用太阳磁场望远镜取得了纵向磁场图,视向速度场和一系列照片。从Fig.1我们可以看到黑子群的三个暗核(用F1、F2、F3表示)。17日另一个小黑子F4出现并于19日消失,F2向左移动并离开F1。由图2可以看出其磁场非常复杂,三个主要核是S极并被N极围住,在B和C附近有一个孤岛结构,19日它与B联结。 在观测中我们还看到在耀斑期间暗条的破裂和耀斑后暗条重建的过程。  相似文献   

11.
12.
本文分析了AR5395活动区1989年3月9日——3月15日光球纵向电流密度与耀斑初始亮点及耀斑位置之间的关系,得到如下结果: 1.Hα初始亮点并不是在电流密度最强处,并且有很多就是在非电流处(<1×  相似文献   

13.
14.
本文利用色球Hα单色光序列照相资料,Hα光谱扫描资料,黑子精细结构照相资料和日面纵向磁场观测资料,分析了1989年1月18日WLF所在活动区NOAA/USAF:5312的磁场结构,黑子结构及该WLF的演化特征,求出了视向速度场,并以理论计算的Hα谱线轮廓作为诊断工具,探讨了该WLF可能的能量传输机制和动力学过程。  相似文献   

15.
1994年1月5日日面上产生的1次1N/M1.0耀斑爆发,射电1.42GHz高时间分辨率观测也同时接收到,在小爆发过程里瘵有53个脉冲信号叠加在连志辐射背景上,是很罕见的现象。在AR7646的黑子前导区域,5日有2处新浮的小黑子对,磁场分别的现象。  相似文献   

16.
1989年8月16日,太阳AR5629活动区(S16W96)上空发生一X20的X—射线耀斑。我们取得该耀斑色球Hα单色光照相序列观测资料,该光学耀斑(S16W90)是,1.寿命:约13个小时.到0732—0734UT达极大;2.结构,成环状系、分主环与次  相似文献   

17.
AR5629的太阳活动区于8月17日转到日背面(S16W109),约于0104UT在其上空出现了一大环状耀斑,同时伴随有X2.9级的X—射线爆和射电10厘米流量达到5600流量单位的射电爆。我们取得该耀斑的几个时段的二维光谱Hα和Hβ两波段  相似文献   

18.
我们首次获得1989年1月18日太阳白光耀斑的二维多波段光谱扫描、及同步的色球Hα单色光和准同步的光球黑子照相观测资料。对部分资料分析表明,该白光耀斑为多块结构,寿命长,主核位于光球磁纵场中性线上或附近,顺色球磁纵场演变,同暗条激活和谱斑密切相关。  相似文献   

19.
APPENDIXIPARTIAR 4964 SUMMARY(Y N 88058)L=309SPOTFLARES(1)DATELATCMD CLASS MAG.CLASS(2)AREAC M XS10 14 12 1012巧16 14 11 4 6 6 11 88nUO声Q气、︼,.二,jo一城︸ 气乙4BB]988.3.11(2)523E73BXO3 .123 .13523E82BXI丹j6BBG524E77FHI3 .14525E64FKI︸、以O八,一,口O少O6一工J525E50FKIBGD525E37FKIBGD︸、了Oj.五j..且n,石U今曰O沪八”内J八11︸︸、︸﹃、J气‘,、︶‘J 44尹O3 .173 .18525E25FKIS25EllFKIBGDBGS25EOIFKIBGDS25W12FKIBGD40了n,4刁,,、月,八日︸涌,,、…  相似文献   

20.
我国首次获得1989年1月18日太阳白光耀斑的二维多波段光谱扫描、及同步的色球Hα单色光和准同步的光球黑子照相观测资料。对部分资料分析表明,该白光耀斑为多块结构,寿命长,主核位于光球磁纵场中性线上或附近,顺色球磁纵场演变,同暗条激活和谱斑密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号