首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
天山地区夏季极端降水特征及气候变化   总被引:4,自引:5,他引:4  
基于1961—2007年天山地区32站的逐日降水资料,分析了夏季天山地区极端降水事件的气候分布和时间变化特征.结果表明:夏季天山地区的极端降水量、极端降水日和极端降水比分布存在明显的区域差异.局地极端降水频繁,平均3~4d就有1次发生,大范围极端降水较少发生.连续性极端降水以1d为主.极端降水量在天山南北坡均随地形增加而增多,地形高度对降水的影响,北坡要大于南坡.在相同高度范围内,北坡极端降水量基本均大于南坡.天山地区的极端降水事件呈增多趋势,在1970年代中后期至1980年代中前期,极端降水事件为低值期,而1990年代是高值期.  相似文献   

2.
青藏高原冬春季积雪异常与西南地区夏季降水的关系   总被引:3,自引:1,他引:3  
选取1961-2007年青藏高原冬、春季积雪日数资料和西南地区夏季降水资料,对高原积雪和降水作奇异值分解(SVD)分析.结果表明:冬春季高原积雪对西南地区夏季旱涝有重要的影响.冬、春季高原积雪的不同分布将造成后期西南地区夏季降水分布出现差异.西南地区夏季降水对冬季高原积雪异常最敏感的区域主要是四川东北部、重庆、西藏中西部,对春季积雪异常最敏感的区域主要位于四川东部、重庆、贵州东北部,以及西藏中东部.与降水敏感区相对应的冬季高原积雪分布的关键区是西藏中西部和青海中南部至四川西北部地区,春季则转变为西藏西部和青海部分地区.总的来说,冬季高原积雪的异常变化比春季对西南地区夏季降水的影响更为明显.因此,前期青藏高原积雪是西南地区夏季降水预测中的一个重要信号,对夏季西南地区降水有一定的指示和预测意义;冬季高原积雪日数尤其具有预报指示意义,可作为一个重要的预测指标.  相似文献   

3.
北疆极端降水事件的区域性和持续性特征分析   总被引:5,自引:5,他引:0  
赵勇  黄丹青  朱坚  杨青 《冰川冻土》2011,33(3):524-531
基于新疆北部1961—2007年43个站点的逐日降水资料,采用百分位方法定义极端降水事件的阈值,分析了北疆地区极端降水事件的区域性和持续性特征.结果表明:春夏秋冬四季,大范围发生极端降水事件的区域分别位于北疆的东北部地区、北部地区、东北部地区和西北部地区以及东南地区,发生持续性较强的极端降水事件的频数大值中心分别集中在伊犁河谷、中东天山地区、北疆西南部和北疆盆地.持续1d的极端降水对总降水贡献四季分布均匀,夏季略高.差异主要表现为由春季到冬季,大值中心呈现出从北疆的东天山地区向中天山和盆地地区移动的趋势.持续2d的极端降水对总降水贡献四季之间差异较显著,一般夏、冬季的较大而春、秋季的则较小.各类持续性极端降水平均强度表明,北疆地区的强降水灾害多数是由持续时间较长的极端降水事件所造成的,四季北疆地区区域平均的持续性极端降水均为显著的线性上升趋势.  相似文献   

4.
新疆阿勒泰地区近50 a夏季极端降水事件变化特征   总被引:3,自引:2,他引:1  
利用新疆阿勒泰地区近50 a(1961-2010年)7站夏季(6-8月)逐日降水资料、NCEP/NCAR资料及大气环流指数,采用百分位定义法确定各站夏季极端降水事件阈值,运用线性趋势、突变分析、滑动t检验、Morlet小波分析及相关分析等方法来分析该地区夏季极端降水事件的气候变化.研究表明:阿勒泰地区各站夏季极端降水事件阈值为9.0~13.1 mm·d-1,阈值存在明显的空间分布差异,且地形及海拔高度对该地区夏季极端降水事件阈值均有影响,海拔高度与阈值两者基本呈指数关系.近50 a来阿勒泰地区夏季极端降水频数及强度的年代际变化具有较好的同步性,均表现为20世纪80年代中期之前频数(强度)偏少(弱),80年代中期以后频数(强度)增多(增强),并于20世纪90年代中期达到最多(最强),但进入2000年后频数(强度)开始减少(减弱).近50 a来阿勒泰地区夏季极端降水事件年际变化的持续性较好,大部分站均没有出现显著性突变,只有阿勒泰、富蕴站在20世纪80年代末期及90年代初出现了明显的突变.北非大西洋北美副高脊线、北非副高脊线、西藏高原A指数是影响该地区夏季极端降水事件的主要因子.  相似文献   

5.
青藏高原春季土壤湿度与中国东部夏季降水之间的关系   总被引:5,自引:6,他引:5  
应用SVD方法分析了青藏高原地区春季土壤湿度异常和中国东部地区夏季降水之间的关系.结果表明,青藏高原不同地区、不同深度的土壤湿度与中国东部夏季降水的相关特征不同.青藏高原东北部和西北部0~10cm深度(表层)土壤湿度与中国华北、东北地区的夏季降水为正相关,而与华南地区为负相关;青藏高原中部及南部0~10cm表层土壤湿度与华北地区夏季的降水有较强负相关;青藏高原北部及东部10~200cm深度(深层)土壤湿度与华北、东北地区的夏季降水为负相关,而与华南地区夏季降水为正相关;青藏高原中东部10~200cm深层土壤湿度与长江中下游和华南大部分地区夏季降水呈负相关关系.即青藏高原不同地区、不同深度层春季土壤湿度的变化,对中国东部地区的夏季降水具有显著影响.  相似文献   

6.
本文研究了前期冬季北极海冰与中国东部春季极端降水频次的联系及其可能机制,并进一步探讨了海冰异常信号对极端降水的预测价值。结果表明,前冬戴维斯海峡—巴芬湾区域海冰异常与中国东部春季极端降水频次经验正交分解第一模态(EOF1)之间存在密切联系。当前冬戴维斯海峡—巴芬湾区域海冰异常偏多时,冬季大气环流呈现出类北大西洋涛动(NAO)正位相的异常分布,并伴随经向的北大西洋三极型海温异常。该海温异常可以从冬季持续到春季,进而激发出从北大西洋到欧亚中纬度的纬向遥相关波列,在东亚地区引起气旋型环流异常。该气旋型环流异常会引起中国东部地区湿度显著增加,上升运动增强,从而为该地区极端降水的发生提供了有利的背景条件。相反,当前冬戴维斯海峡—巴芬湾区域海冰异常偏少时,其滞后引起的春季环流异常则不利于中国东部地区极端降水的发生。进一步的交叉检验结果表明,前冬戴维斯海峡—巴芬湾区域海冰异常信号对中国东部春季极端降水具有重要的预测价值。  相似文献   

7.
周雅蔓  赵勇  刘晶 《冰川冻土》2020,42(2):598-608
基于1961 - 2017年6 - 8月新疆北部47个观测站点的逐日降水资料, 根据百分位法定义不同站点的夏季极端降水阈值, 分析了新疆北部地区夏季极端降水事件和最大日降水的时空分布特征、 贡献率及其与海拔的关系。结果表明: 新疆北部地区夏季极端降水事件和最大日降水量的各个特征量分布存在明显的时空差异, 空间上夏季极端降水事件、 最大日降水量表现为山区高、 盆地低的特点,在海拔2 000 m左右存在一个最大降水带; 夏季极端降水事件和最大日降水量呈增多、 增强的趋势, 并从20世纪90年代前后开始有明显的增加。夏季极端降水事件主要以单日为主, 夏季极端降水贡献随时间呈缓慢增加的趋势, 而夏季极端降水过程贡献和最大日降水贡献随时间变化呈下降趋势。  相似文献   

8.
时光训  刘健  马力  李兰晖  陈倩  张华敏 《水文》2017,37(4):77-85
基于长江流域131个气象站数据,利用Mann-Kendall非参数检验、主成分分析及R/S分析等方法分析了长江流域极端降水的时空变化特征。结果表明:(1)主要强降水指数变化均呈现增加趋势。20世纪70年代主要极端降水指数呈持续下降趋势,20世纪80年代、90年代和2000年以后降水指数变化趋势年代差异增大,稳定性差。(2)强降水在太湖流域、鄱阳湖流域大部分地区和洞庭湖流域的下游地区呈显著增加。(3)除了弱降水指数外,各极端降水指数之间具有显著的相关性。(4)长江流域降水的主要特点在于弱降水变化不显著,强降水变化幅度较大,降水过程不稳定,容易发生洪涝灾害。  相似文献   

9.
青藏高原陆表特征与中国夏季降水的关系研究   总被引:1,自引:5,他引:1  
高荣  韦志刚  钟海玲 《冰川冻土》2017,39(4):741-747
利用青藏高原72个站逐日积雪、冻土观测资料,AVHRR归一化植被指数(NDVI)和全国550个站逐日降水资料,分析了青藏高原陆表特征与中国夏季降水的关系。结果表明,我国夏季降水在华北和东北南部,长江中下游和华南地区降水空间一致性较好,相邻站点间降水变化趋势近似。华南、长江中下游和淮河降水呈增加趋势,其中长江中下游每10年增加37 mm,但华北降水呈减少趋势。华南、长江中下游和华北对高原积雪、冻土和植被的变化均较为敏感,而淮河仅对高原植被变化较为敏感。利用高原积雪、冻土和植被建立了代表高原地表特征的变化序列,其对长江中下游、淮河、华北夏季降水均有较好指示意义,与夏季降水的相关系数由南到北表现为"负-正-负"的分布特征。最后,提出一种高原陆表状况影响中国夏季降水的概念模型:高原冬春积雪偏多(少)、冬季冻土偏厚(薄)、春季植被偏多(少)会使得夏季高原地区土壤湿度偏大(小),高原地表感热偏弱(强),从而使得南亚高压和西太副高偏弱(强),南海季风偏弱(强),长江流域降水偏多(少),华南和华北地区降水偏少(多)。  相似文献   

10.
北疆冬季降水的气候特征分析   总被引:5,自引:4,他引:1  
赵勇  崔彩霞  李霞 《冰川冻土》2011,33(2):292-299
基于新疆北部1961-2009年43站逐日降水资料,分析了北疆冬季降水的气候分布及时间变化特征.结果表明:北疆冬季降水存在明显的区域差异,北疆西部是降水量和降水日数最多的区域.相对夏季,冬季降水受地形影响规律不明显,这与两个季节形成降水的云物理微观过程的环境条件差异有关.冬季降水呈明显的增加趋势,其中小雪表现为减少趋势...  相似文献   

11.
气候变暖背景下2015年夏季新疆极端高温过程及其影响   总被引:4,自引:2,他引:2  
用新疆105个气象站监测资料,分析了2015年夏季高温过程的极端特征.2015年夏季新疆区域出现高温过程,从7月上旬后期开始,南疆东南部以及东疆最早出现日最高气温≥35℃的高温天气,进入中旬后高温范围迅速向西、向北蔓延发展,下旬初期范围达最大,南北疆均出现高温天气.新疆区域该次高温过程在7月中下旬最为强盛,全疆84.8%的测站(89站)出现高温;52.4%的测站(55站)的高温持续日数位居历史第1位;全疆21.9%的测站(23站)极端最高气温位居历史第1位,极端最高气温出现在吐鲁番东坎,达到47.7℃.这次高温过程造成8站夏季温度位居同期第1位,南疆及天山山区的7月平均气温位居历史同期第1位,有54.3%的测站(57站)7月平均气温突破同期历史极值.海拔3544 m的天山山区大西沟站7月份日最高气温连续突破历史极值,22日达到20.7℃.高温过程中,新疆区域7月0℃层高度位居1991年以来同期第1位,其中,7月19-23日连续6 d位居1991年以来的第1位.天山开都河流域日0℃层高度持续33 d高于1991-2015年平均值. 7月上旬到下旬,在500 hPa高空,伊朗高压东移并控制新疆,是造成此次高温过程的直接原因.在100 hPa高空,南亚高压的形态、中心位置、强度变化与新疆此次高温过程演变关系密切.高温过程造成新疆高山区冰雪迅速消融,引发塔里木河流域出现融雪(冰)型洪水.  相似文献   

12.
The interannual variability of all-India summer monsoon (June to September) rainfall and its teleconnections with the southern oscillation index (SOI) and sea surface temperature (SST) anomaly of the eastern equatorial Pacific ocean have been examined for the period 1871–1978 for different seasons (i.e., winter, spring, summer and autumn). The relationship (correlation coefficient) between all-India summer monsoon rainfall andSOI for different seasons is positive and highly significant. Further examination of 10-, 20- and 30-year sliding window lengths’ correlations, brings out the highly consistent and significant character of the relationships. The relationship between all-India monsoon rainfall andSST for different seasons is negative and is significant at 1 % level or above. Drought years are characterised by negative anomalies ofSOI and positive anomalies ofSST and vice versa with flood years. The relationship betweenSOI andSST is negative and significant at 0.1 % level. The relationships between all-India summer monsoon rainfall,SOI and sst are expected to improve our understanding of the interannual variability of the summer monsoon.  相似文献   

13.
基于1961 - 2018年冬季逐日降水资料, 研究了新疆北部不同类型暴雪的时空分布和环流特征。结果表明, 冬季新疆北部的局地暴雪日数最多(73.1%), 区域暴雪次之(20.9%), 大范围暴雪最少(6.0%)。总暴雪、 区域暴雪和大范围暴雪日数呈显著的增加趋势, 局地暴雪的增加趋势不显著。总暴雪、 局地暴雪和区域暴雪日数在12月最多; 大范围暴雪日数在2月最多。20世纪60 - 80年代, 新疆北部冬季以局地暴雪为主, 暴雪中心主要位于伊犁河谷和塔城地区北部; 90年代至今, 区域暴雪和大范围暴雪日数显著增加, 除伊犁河谷和塔城地区北部外, 阿勒泰地区、 天山北坡中段的暴雪日数增加显著, 乌鲁木齐成为天山北坡新的暴雪中心。新疆北部冬季暴雪的环流形势可分为3类6型, 其中锋区波动类最多, 低槽类次之, 低涡类最少。20世纪90年代前, 锋区波动类最多; 进入21世纪后, 低槽类明显增多。  相似文献   

14.
Some statistical properties of the summer monsoon seasonal rainfall for India during the last 100 years (1881–1980) are presented. The most recent decade of 1971–1980 shows the lowest value of standard-decadal average monsoon rainfall (86.40 cm) and is also characterised by the second highest value of coefficient of variation in monsoon rainfall (12.4 %). The combined last two standard-decadal period of 1961–1980 was the period of the largest coefficient of variation and the lowest average monsoon rainfall for India. The possible influence of global climatic variability on the performance of the monsoon is also examined. Analyses of correlation coefficient show that a statistically significant positive relationship with a time-lag of about six months exists between monsoon rainfall and northern hemispheric surface air temperature. A cooler northern hemisphere during January/February leads to a poor monsoon. All the major drought years during the last 3 decades had much cooler January/February periods over the northern hemisphere—1972 having the coldest January/February with a temperature departure of −0.94°C and the most disastrous monsoon failure.  相似文献   

15.
We use daily satellite estimates of sea surface temperature (SST) and rainfall during 1998–2005 to show that onset of convection over the central Bay of Bengal (88–92°E, 14–18°N) during the core summer monsoon (mid-May to September) is linked to the meridional gradient of SST in the bay. The SST gradient was computed between two boxes in the northern (88–92°E, 18–22°N) and southern (82–88°E, 4–8°N) bay; the latter is the area of the cold tongue in the bay linked to the Summer Monsoon Current. Convection over central bay followed the SST difference between the northern and southern bay (ΔT) exceeding 0.75°C in 28 cases. There was no instance of ΔT exceeding this threshold without a burst in convection. There were, however, five instances of convection occurring without this SST gradient. Long rainfall events (events lasting more than a week) were associated with an SST event (ΔT ≥ 0.75°C); rainfall events tended to be short when not associated with an SST event. The SST gradient was important for the onset of convection, but not for its persistence: convection often persisted for several days even after the SST gradient weakened. The lag between ΔT exceeding 0.75°C and the onset of convection was 0–18 days, but the lag histogram peaked at one week. In 75% of the 28 cases, convection occurred within a week of ΔT exceeding the threshold of 0.75°C. The northern bay SST, T N , contributed more to ΔT, but it was a weaker criterion for convection than the SST gradient. A sensitivity analysis showed that the corresponding threshold for T N was 29°C. We hypothesise that the excess heating (∼1°C above the threshold for deep convection) required in the northern bay to trigger convection is because this excess in SST is what is required to establish the critical SST gradient.  相似文献   

16.
《Atmósfera》2014,27(2):141-163
In southern South America and for the period 1960-2011, frequencies and trends of seasonal blocking situations (Bs) determined at 100, 70 and 40° W (B100, B70 and B40), respectively are estimated. The effect of such situations on temperature and precipitation is also analyzed. The distribution of occurrences of B100, B70 and B40 peaks in spring and has minimum values in summer; trends are positive in summer and fall and negative in winter and spring. To the north of approximately 38° S, B70 determines negative temperature anomalies (ΔT) over the entire country during the four seasons and B40 in spring and summer. Except for summer, rainfall is greater than normal when Bs occur at both longitudes. To the south of approximately 38° S, B100 give place to negative ΔT. The frequencies and amounts of precipitation are greater in spring. This area is limited to the northernmost northern (southernmost southern) area in fall (summer). According to the signs of the trends of the Bs and to the associated values of temperature and precipitation, the way in which they may have contributed to the change in both variables during 1960-2011 is inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号