首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive patterns in the records of total organic carbon (TOC), total nitrogen (TN) and δ13Corg observed in the Lake Hovsgol sediment section from HDP-04 drill core reflect past changes in productivity of Lake Hovsgol and in the isotopic composition of the lake's carbon pool. Lake Hovsgol productivity proxy signals are interpreted to represent the response of the Hovsgol lacustrine system to glacial–interglacial cycles of the Pleistocene. This interpretation is supported by the apparent orbitally-forced pattern in the TOC, TN and δ13Corg records of the past 250 ka in the BDP-96-2 drill core from neighboring Lake Baikal.The intervals with independent age control, such as the radiocarbon-dated last glacial–interglacial transition and the paleomagnetic reversals, make it evident that productivity proxy signals are reliable indicators of past cold-to-warm and warm-to-cold climate transitions, as seen from the agreement with the pattern of global climate change in marine δ18O records. The Brunhes/Matuyama reversal during the MIS 19 interglacial coincides with a distinct peak of TOC and TN in the Hovsgol record, similar to the signal during the Holocene interglacial. By contrast, the upper Jaramillo reversal in the Lake Hovsgol record occurs in a diatom-free calcareous interval characterized by minima in TOC, TN and by a ‘glacial’-type range of δ13Corg values. In both Lake Baikal and Lake Hovsgol records, peaks in TOC and TN contents help distinguishing past interglacials and interstadials, and isotopically-heaviest δ13Corg values help identify past glacial intervals.An age model for the HDP-04 drill core section is proposed based on recognizing the repetitive patterns in Lake Hovsgol productivity and lithologic records as regional paleoclimate cycles of middle to late Pleistocene. Absolute dates and diatom biostratigraphic correlation ties to the Lake Baikal record are used as key controls. In the proposed age model, the interval 81–24 m in the HDP-04 sediment section below the major unconformity is correlated to MIS 27 through late MIS 13, whereas the upper 24 m of the HDP-04 section is suggested to have recovered the sedimentary record of late MIS 7 to MIS 1.  相似文献   

2.
A method of quantitative comparison of eutrophication of an area is proposed for the Baltic Sea, based on pigment content in sediments. The pigments concerned were chlorins a (i.e. chlorophylls a, b and selected chlorophyll a derivatives) and chlorophylls c. The analyses were performed on 300 samples from different layers of recent (0–10 cm) sediments, collected from about 50 stations, at different sites of the southern Baltic, including the estuaries of the two largest Polish rivers, in different seasons between 1992 and 2001, before and after the great flood of July 1997. The results are related to sampling site, sediment layer and hydrological conditions and also to organic carbon and Eh in sediments, oxygen and salinity in near-bottom waters. Depending on different chlorin a content in 0–1 and 0–10 cm layers, the sampling sites are classified into one of three groups: 1. Szczecin Lagoon and the Deep of Gda sk stations (permanently eutrophic, chl a in 0–1 cm >40 nmol/g, Σchlns a in 0–1 in 0–10 cm layer, Σchlns aA in Σchlns a=55–65%), 2. Open sea stations (mesotrophic/oligotrophic, chl a in 0–1 cm <10 nmol/g, Σchlns a in 0–1 in 0–10 cm layer, Σchlns aA in Σchlns a 50%; and 3. Coastal stations (periodically eutrophic, chl a in 0–1 cm 10–40 nmol/g, Σchlns aA in Σchlns a 40%). The correlation coefficient between chlorophyll a and chlorophylls b and c indicates the classes of algae, which could be the main source of organic matter in the sediments. A high correlation with chlorophylls c is a marker of diatoms; a high correlation with chlorophyll b is a marker of green algae; and low correlation both with chlorophylls b and c—indicates a high blue–green algae input.  相似文献   

3.
Photosynthetic pigments and other indicators of phytoplankton were analyzed in a dated undisturbed sediment core obtained from the southern basin of Lake Baikal to reveal temporal changes in the phytoplankton community in the lake through the last glacial/post-glacial transition. The sedimentation age of the core spans the last 24 14C ka. Chlorophyll a, its derivatives, carotenoids and total organic carbon (TOC) started to increase after 15 14C ka, and the onset of biogenic silica occurred at 10 14C ka. This indicated that the post-glacial growth of diatoms was preceded by that of other phytoplankton groups. In the record of the pigments and TOC, a temporary decrease was observed in the period 11.5–10.5 14C ka, corresponding to the Younger Dryas cold period. The similarity found between the depth profiles of pyropheophytin a and steryl chlorin esters formed through predation of phytoplankton by zooplankton and that of TOC suggested the important contribution of fecal pellets to sedimentary organic matter in the lake.  相似文献   

4.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   

5.
 With this paper we present a first attempt to combine the direct results on lithology, composition and age dating in the boreholes BDP-93, BDP-96 and BDP-97 with geological and seismic data from the areas where those sections were drilled. The sedimentary environments represented by the BDP boreholes are markedly different and possess characteristic lithological features. The results of the deep drilling provide the essential means for testing numerous age models used in geological reconstructions of the Lake Baikal rifting dynamics. Neither the basin-wide unconformity interpreted from seismic data, nor the interpreted change from shallow-water to deep-water facies at the boundary of the seismic stratigraphic complexes were found in the BDP-96 boreholes on Academician Ridge. Also, lithology does not support the proposed reconstructions of intense lake level fluctuations and transgressions during the Pliocene at Academician Ridge. The continuous deep-water hemipelagic sedimentation at Academician Ridge has existed for the past 5 Ma. The beginning of an intense rifting phase of the Neobaikalian sub-stage and related drastic changes in sedimentation processes were interpreted on seismic sections as the basin-wide unconformity B10. Different age estimates for this boundary ranged from Late Pliocene (3.5 Ma) to Plio-Pleistocene boundary. As shown by BDP-96 borehole, B10 is associated with a lithological change from diatomaceous ooze to dense silty clay and not with an erosional contact. The new age for this boundary in BDP-96 is approximately 2.5 Ma. This new age constraint suggests that the upper sedimentary strata of Northern Baikal (1.5–1.7 km thick) have formed during the past 2.5 Ma with average sedimentation rates of 60–70 cm/ka. The BDP-93 boreholes at Buguldeika suggest that uplift in Primorsky Range took place prior to 1.07–1.31 Ma, a date which exceeds the age of previous geological models. Received: 12 March 1999 / Accepted: 10 February 2000  相似文献   

6.
A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity.Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.  相似文献   

7.
Investigation of chlorins in the oxic surface sediment of a small eutrophic alpine lake (Motte lake) revealed the presence of a new series of steryl chlorin esters containing the pheophorbide a nucleus, together with their pyropheophorbide a steryl ester counterparts previously observed in the anoxic surface sediment of the same lake. Identification of the pheophorbide a steryl esters was based on comparison of spectroscopic, chromatographic and mass spectrometric characteristics of the compounds with those of a synthetic standard and of pyropheophorbide a steryl esters. Combined liquid chromatography-mass spectrometry analysis confirmed the absence of pheophorbide a steryl esters in the anoxic sediment but allowed their detection in traces in the water column, indicating that pheophorbide a steryl esters are, like their pyropheophorbide a analogs, formed in the water column. The distribution of sterols released by hydrolysis of the pheophorbide a steryl esters shows close similarities to that of the free sterols in the water column and of the sterols of the pyropheophorbide a steryl esters. It appears that, like their pyropheophorbide a counterparts, pheophorbide a steryl esters incorporate mainly sterols of phytoplanktonic origin. Their formation probably involves the same mechanism as for pyropheophorbide a steryl ester formation, i.e. metabolism by zooplankton grazing on phytoplankton. The presence of pheophorbide a steryl esters in the oxic sediment and their absence from the anoxic sediment is probably due to a lower stability of compounds containing a carbomethoxy substituent in the anoxic environment.  相似文献   

8.
Lake Kinneret, a relict lake from the Neogene, is characterised by the dominance among its phytoplankton of the dinoflagellate Peridinium cinctum. The lipid geochemistry of Lake Kinneret is discussed herein in terms of the biology, chemistry and hydrology of the lake. Lipids isolated from two sediment sections (surface and 15 cm deep), obtained from the deepest point of Lake Kinneret, include: (1) 4α-methyl-5α (H)-stanols and related derivatives characteristic of P. cinctum, the novel sterol 4a-methylgorgosterol, and peridinosterol and 4α-methylgorgostanol, not previously reported to occur in lacustrine sediments; (2) C30 and C32 alkane-1,15-diols, not previously reported to occur in contemporary lacustrine deposits, and (3) products of early diagenesis. Many similarities were observed with the more widely studied marine dinoflagellates and marine sediments with dinoflagellate input.  相似文献   

9.
A 10 m sediment core from Academician Ridge in Lake Baikal was analyzed for its molecular composition using on-line TMAH (tetramethylammomium hydroxide) thermochemolysis. Major products are lignin phenols, n-C14 to C30 fatty acids (alkanoic acids), cutin acids, hydroxy acids and aliphatic dicarboxylic acids. Lignin phenols are abundant in warmer periods (the interglacial: marine isotope stage (MIS) 5e and MIS 1), but extremely low in the other (colder) periods. This result coincides well with pollen records reported for a core near the present site, where an expansion of coniferous forests in sub-stage 5e and MIS 1 was implied. Normal C24–C30 alkanoic acids, important components of plant wax esters, are abundant in 5e and MIS 1 and are present in significant amounts in the other (colder) periods, unlike the lignin phenols. A high abundance of n-C24 to C30 alkanoic acids relative to lignin phenols in the Bølling–Allerød warm period suggests an enhanced development of herbs.It is implied from comparison of the sedimentary lignin phenol record with fossil pollen records and lignin phenol analysis of modern pollen that the ratio of cinnamyl phenols to vanillyl phenols may serve as an indicator of pollen contribution to sedimentary organic matter.  相似文献   

10.
The elastic constants of natural single-crystal aragonite (CaCO3) have been measured by Brillouin spectroscopy at ambient conditions. The elastic constants C11, C22, C33, C44, C55, C66, C12, C13 and C23 are 171.1±1.0, 110.1±0.9, 98.4±1.2, 39.3±0.6, 24.2±0.4, 40.2±0.6, 60.3±1.0, 27.8±1.6 and 41.9±2.0 GPa, respectively, for aragonite. The linear compressibilities of the a-, b- and c-axis for aragonite at ambient conditions were derived from our measured data to be 3.0±0.2, 4.2±0.2 and 7.3±0.6×10–3 GPa–1, respectively. The aggregate bulk and shear moduli for aragonite using the Voigt-Reuss-Hill (VRH) scheme are thus calculated to be 68.9±1.4 and 35.8±0.2 GPa, respectively. The value of bulk modulus is in remarkable contrast to the literature value of 46.9 GPa measured almost a century ago. Our new datum, however, is closer to that derived from recent atomistic simulation and static compression studies.  相似文献   

11.
Climatically driven Late Pleistocene and Holocene vegetation changes were reconstructed based on pollen records from the sediments of Lake Kotokel and Cheremushka Bog, located on the eastern shore of Lake Baikal. The described paleoenvironmental record has higher resolution than records collected from Lake Baikal and unites individual events identified in prior studies of bottom and onshore cores. Remarkable shifts in landscapes and expansions of index plants are as follows. Forest tundra and/or forest steppe landscape with birch, spruce, Artemisia, and Poaceae prevailed at ca. 50–25 14C kyr BP. Tundra and/or steppe vegetation dominated by Artemisia and Poaceae was typical for the Last Glacial Maximum. The expansion of shrub birch and willow occurred at ca. 15.5 14C kyr BP. Two peaks of spruce expansion at ca. 47.5–42.4 14C kyr BP (Karginian time) and at ca. 14.5–13 ka (Bølling-Allerød warm intervals) suggest that the condition were more humid than today. A slight increase in Artemisia at ca. 11–10.5 14C kyr BP (13–12 ka) was indicative of the Younger Dryas event. An expansion of birch forests with fir at ca. 12–6.4 ka suggests higher humidity. The currently dominant Scots and Siberian pine forests with birch expanded since 6.4 ka.  相似文献   

12.
Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr–Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr–Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300–400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe 2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.  相似文献   

13.
Fossil pigments were identified in a sediment core from Kirisjes Pond, a small lake in the Larsemann Hills, east Antarctica, using reversed-phase HPLC and LC–MS/MS. Chlorophyll a- and b-derived components indicate the presence of oxygenic primary producers; steryl chlorin esters provide evidence of grazing, while shifts in their esterifying sterol composition record changes in the primary producer community. Bacteriochlorophyll c- and d-derived components, indicative of photic zone anoxia, were identified with structural variations including extensive alkylation in the macrocycle up to C6. The pigment distribution reveals a change from oxygenated freshwater to a stratified water body with development of photic zone anoxia. This coincides with a marine incursion identified from diatom records and is followed by re-isolation and reversion to oxygenated freshwater conditions.  相似文献   

14.
The δ13C values of higher plant wax C27–33 n-alkanes were determined in three, time-equivalent Pliocene (2.943 Ma) sapropels and homogeneous calcareous ooze from three different sites forming an east-west transect in the eastern Mediterranean Basin in order to study the composition of the vegetation on the continents surrounding the Mediterranean Sea. A two-end member mixing model transformed the measured δ13C values into the contribution of C4 plants to the terrestrial vegetation. These calculations indicated a high C4 plant contribution (i.e. 40–50%) in the periods just before and just after sapropel formation. During sapropel deposition the C4 plant contribution increased by up to 20% at all sites. This is interpreted to record the increased overall plant coverage of the Mediterranean borderlands resulting from the change in formerly barren desert areas into C4 grass-dominated savannahs as a response to the wetter climate during sapropel deposition. Enhanced accumulation rates (ARs) of long-chain n-alkanes (C27–33) and n-alkan-1-ols (C26–30) towards the middle of the sapropel in concert with a decrease in the Ti/Al ratio confirm an increased delivery of terrigenous organic matter at all sites. These biomarkers were probably predominantly fluvially transported to the Mediterranean Sea, not only by the Nile but by fossil wadi river systems on the northern African continent.  相似文献   

15.
We performed a thermomagnetic analysis of 91 samples and a probe microanalysis of five samples of sedimentary rocks from the lower zone of the borehole BDP-98 drilled at the bottom of Lake Baikal. The results show the scarcity of native iron: It was found only in five samples. Its concentration varies from ~10–5 to 7 × 10–4%. The distribution of native iron by content is bimodal, with a distinct “zero” mode. This scarcity of native iron in the Baikal sediments distinguishes them from continental (Eurasia) and oceanic (Atlantic) sediments of different ages. It is due to the high rate of sedimentation in the studied interval of BDP-98.  相似文献   

16.
A mixture of C33–C37 botryococcenes and partially reduced derivatives was isolated from ca. 32,000 year old sediment from Lake Masoko, a freshwater crater lake in the Rungwe Range area (Tanzania). Botryococcenes and derivatives accounted for 246 μg/g dry sediment and for >92% of the hydrocarbon fraction; 1D and 2D nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry allowed the structure of the dominant botryococcene (43% of hydrocarbon fraction) to be established, after purification using high performance liquid chromatography (HPLC). The compound is a novel tetraunsaturated dicyclic C34 botryococcene and is named C34 masokocene. Overall, the structures of six other novel botryococcenes and four partially reduced derivatives were tentatively assigned. The structures of the new biomarkers, three dicyclic C34–C36 botryococcenes (or masokocenes) and seven monocyclic C34–C37 analogues are discussed along with their biosynthetic relationship. The high abundance of such polyunsaturated compounds preserved in 32,000 year old sediment from the lake indicates an aquatic ecosystem dominated at the time by the green alga Botryococcus braunii, as well very good preservation of the organic matter.  相似文献   

17.
Modeling the bulk sediment XRD patterns allows insight into the environmental and depositional histories of two neighboring rift lake basins within the Baikal watershed. Parallel 14C-dated LGM-Holocene records in Lakes Baikal and Hovsgol are used to discuss the mineralogical signatures of regional climate change. In both basins, it is possible to distinguish ‘glacial’ and ‘interglacial’ mineral associations. Clay minerals comprise in excess of 50% of layered silicates in bulk sediment.The abundance of smectite (expandable) layers in mixed-layer illite–smectites and the total illite abundance are the main paleoclimatic indices in the clay mineral assemblage. Both indices exhibit coherent responses to the Bølling–Allerød and the Younger Dryas. The smectite layer index is not equivalent to the abundance of illite–smectite, because illite–smectite tends to transform into illite. Repeated wetting–drying cycles in soils and high abundance of expandable layers in illite–smectites (>42%) favor the process of illitization. This relationship is clearly shown in both Baikal and Hovsgol records for the first time. The opposite late Holocene trends in illite abundance in Lake Baikal and Lake Hovsgol records suggest that a sensitive optimal regime may exist for illite formation in the Baikal watershed with regard to warmth and effective moisture.The Lake Hovsgol sediments of the last glacial contain carbonates, suggesting a positive trend in the lake's water budget. A progressive change towards lower Mg content in carbonates indicates lowering mineralization of lake waters. This trend is consistent with the lithologic evidence for lake-level rise in the Hovsgol basin.The pattern of mineralogical changes during the past 20 ka is used to interpret bulk sediment and carbonate mineralogy of the long 81-m Lake Hovsgol drill core (HDP-04) with a basal age of 1 Ma. The interglacial-type silicate mineral associations are confined to several thin intervals; most of the sediment record is calcareous. Carbonates are represented by six main mineral phases: calcite, low-Mg calcite, intermediate/high-Mg calcite, dolomite, excess-Ca dolomite and metastable monohydrocalcite. These mineral phases tend to form stratigraphic successions indicative of progressive changes in lake water chemistry. Five sediment layers with abundant Mg-calcites in the HDP-04 section suggest deposition in a low standing lake with high mineralization (salinity) and high Mg/Ca ratios of lake waters. Lake Hovsgol sediments contain the oldest known monohydrocalcite, found tens of meters below lake bottom in sediments as old as 800 ka. This unusual find is likely due to the conditions favorable to preservation of this metastable carbonate.  相似文献   

18.
Temporal changes in paleoproductivity of Lake Biwa (Japan) over the past 32 kyr have been studied by analyzing bulk organic carbon and photosynthetic pigments (chlorins) in the BIW95-5 core. Primary productivity was estimated on the assumption of C/Norg values of 8 for autochthonous organic matter (OM) and 25 for allochthonous OM and using an equation developed for the marine environment. The estimate indicates that primary productivity ranges from 50 to 90 g C m?2 yr?1 in the Holocene, while it is ~60 g C m?2 yr?1 on average in the last glacial. Pheophytin a and pheophorbide a are the major chlorins. A downcore profile of chlorin concentration normalized to autochthonous organic carbon (OC) shows a decreasing trend. Chlorin productivity was corrected by removal of the effect of post-burial chlorin degradation. The temporal profile of chlorin productivity thereby obtained resembles that from autochthonous OC.The difference in primary productivity between the Holocene and the glacial for the lake is markedly smaller than that for Lake Baikal situated in the boreal zone. This difference between the two lakes is probably caused by the difference in their climatic conditions, such as temperature and precipitation. Precipitation at Lake Biwa is relatively large during the glacial and the Holocene because of the continuous influence of the East Asian monsoon. Lake Baikal precipitation is generally small as a result of control by the continental (Siberia) climate regime. In addition, a significant difference in productivity between the glacial and the Holocene for Lake Baikal may be essentially controlled by the hydrodynamic systems in the lake.Lake Biwa terrigenous OM input events occurred at least five times over the period 11–32 kyr BP, suggesting enhanced monsoon activity. Molecular examination of the layer with a large input of terrigenous OM during the Younger Dryas indicates that concentrations of terrigenous biomarkers such as n-C27–C31 alkanes, lignin phenols, cutin acids, ω-hydroxy acids and C29 sterols are high, suggesting that soil OM with peat-like material entered the lake as a result of flooding. An enhanced sedimentation rate in the last 3000 years might have been partially caused by agricultural activity around the lake.  相似文献   

19.
Carbon isotope and molecular compositions of Mississippian to Upper Cretaceous mud gases have been examined from four depth profiles across the Western Canada Sedimentary Basin (WCSB). The profiles range from the shallow oil sands in the east (R0 = 0.25) to the very mature sediments in the overthrust zone to the west (R0 = 2.5). In the undisturbed WCSB, δ13C1δ13C2 and δ13C2δ13C3 cross-plots show three maturity and alteration trends: (1) pre-Cretaceous gas sourced from type II kerogen; (2) Cretaceous Colorado Group gas; and (3) Lower Cretaceous Mannville Group biodegraded gas. A fourth set of distinctly different maturity trends is recognized for Lower Cretaceous gas sourced from type III kerogen in the disturbed belt of the WCSB. Displacement of these latter maturity trends to high δ13C2 values suggests that the sampled gas was trapped after earlier formed gas escaped, probably as a result of overthrusting. Unusually 13C-enriched gas (δ13C1 = −34‰, δ13C2 = −13‰, and δ13C3 = 0‰), from the Gething Formation in the disturbed belt, is the result of late stage gas cracking in a closed system. In general, gas maturity is consistent with the maturity of the host sediments in the WCSB, suggesting that migration and mixing of gases was not pervasive on a broad regional and stratigraphic scale. The ‘Deep Basin’ portion of the WCSB is an exception. Here extensive cross-formational homogenization of gases has occurred, in addition to updip migration along the most permeable stratigraphic units.  相似文献   

20.
Lake Erie is biologically the most active lake among the Great Lakes of North America, experiencing seasonal harmful algal blooms (HABs). The early detection of HABs in the Western Basin of Lake Erie (WBLE) requires a more efficient and accurate monitoring tool. Remote sensing is an efficient tool with high spatial and temporal coverage that can allow accurate and timely detection of the HABs. The WBLE is heavily influenced by the surrounding terrestrial ecosystem via rivers such as the Sandusky River and the Maumee River. As a result, the optical properties of the WBLE are influenced by multiple color producing agents (CPAs) such as phytoplankton, colored dissolved organic matter (CDOM), organic detritus, and terrigenous inorganic particles. The diversity of the CPAs and their non-linear interactions makes these waters optically complex, and the task of optical remote sensing for retrieving estimates of CPAs more challenging. Chlorophyll a, which is the primary light harvesting pigment in all phytoplankton, is used as a proxy for algal biomass. In this study, several published remote sensing algorithms and band ratio models were applied to the reflectance data from the full resolution MERIS sensor to remotely estimate chlorophyll a concentrations in the WBLE. Efficiency of the sensor and the algorithms performance were tested through a least squares regression and residual analysis. The results indicate that, among the suite of existing bio-optical models, the Simis semi-analytical algorithm provided the best model results for measures of algal biomass in the optically complex WBLE with R 2 of 0.65, RMSE 0.85 μg/l, (n = 71, P < 0.05). The superior results of this model in detecting chlorophyll a are attributed to several factors including optimizing spectral regions that are less sensitive to CDOM and the incorporation of correction factors such as absorption effects due to pure water (a w), backscatter (b b) from suspended matter and interference due to phycocyanin (δ), a major accessory pigment in the WBLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号