首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
100hPa高压环流和东风气流的季节、年际和年代际变化   总被引:12,自引:2,他引:12       下载免费PDF全文
利用NCEP/NCAR再分析资料,分析了中低纬地区100hPa高压环流和东风气流的季节、年际和年代际变化,并与南亚高压的相应变化进行对比分析。结果表明,100hPa高压环流中心有明显的季节分布特征,其中心经度的主频区与100hPa南亚高压中心经度的主频区位置较为一致。南亚高压和东风气流的部分特征参数有明显的年际和年代际变化。南亚高压参数有明显的10年和大于20年的振荡周期。东风气流的面积有2~5年的振荡周期,其强度则有4年和15年的振荡周期。  相似文献   

2.
用NCEP/NCAR月平均再分析资料对南亚高压和对流层上层西风急流的季节变化及盛夏两类型态进行对比。结果表明,南亚高压和西风急流中心都有从冬到夏的西移北进和从夏到冬的东退南撤,急流中心位于南亚高压中心北侧。东亚夏季风盛行期间南亚高压中心的北移提前于西风急流中心的北移,二者的强度呈反相的季节变化。一般情况下,伊朗高压对应西部急流型,青藏高压对应东部急流型。典型东、西部急流年份中高纬气温及高度场的差异表明气压梯度力强弱对比是急流东西型变化的主要原因,南亚高压的位置基本上决定了急流中心的型态,但由于南亚高压具有"趋热性",而急流的移动符合热成风的规律,因而二者的热力影响机制有所不同。  相似文献   

3.
东亚副热带西风急流季节变化特征及其热力影响机制探讨   总被引:19,自引:0,他引:19  
况雪源  张耀存 《气象学报》2006,64(5):564-575
利用1961—2000年NCEP/NCAR月平均再分析资料对东亚副热带西风急流强度和位置的季节变化进行了分析,指出急流位置季节变化不仅有明显的南北向移动,6—7月还存在东西方向的突变特征,同时急流轴在北进过程中具有东西向的不一致性,急流中心强度的变化超前于位置的南北移动。在此基础上,采用动态追随急流中心移动的方法,探讨东亚副热带西风急流季节变化的热力影响机制,发现东亚副热带西风急流强度变化及位置移动与对流层中上层气温南北差异的分布结构有很好的对应关系,这说明急流的季节演变是对辐射季节变化及由于东亚特殊的海陆分布和青藏高原大地形影响而造成纬向不均匀加热的响应。从各热量输送项与急流的关系来看,从冬半年到夏半年的增暖时段,急流中心南北温差减小,急流减弱北进;从夏半年到冬半年的降温时段,急流中心南北温差增大,急流加强南退。热量平流输送的经向差异是造成急流中心南北温差的主要原因,急流跟随热量平流输送最大经向梯度中心位置南北移动。非绝热加热对急流中心的东西移动有引导作用,青藏高原春夏季对对流层中上层强大的加热作用是导致6—7月急流中心位置西移突变的原因。  相似文献   

4.
利用NCEP/NCAR再分析资料从能量收支的角度探讨了气候平均状态下副热带高压形态变异和季节转换的物理机制。在考察温度场和加热场季节变化的基础上 ,发现中国江南地区春季降水所形成的非绝热加热源非常显著 ,该热源对后期亚洲季节转换有影响。副热带高压脊面附近经向温度梯度反转取决于温度脊所在纬度位置的变化。温度脊北移是由脊轴北侧的增温率大于脊轴附近的增温率而造成的。热力学方程诊断结果表明 ,亚洲各季风区 (孟加拉湾、南海和南亚 )季节转换的热力机制不同。导致孟加拉湾温度脊显著北跳的主要因素在季风爆发初期是经向暖平流 ,爆发以后是下沉运动 ;引起南海地区经向温度梯度反转的因素有经向暖平流、纬向暖平流和江南地区的非绝热加热 ,特别是经向暖平流的贡献更大 ;造成南亚季风区经向温度梯度逆转的原因是下沉增温。  相似文献   

5.
应用国家气候中心气候模式(BCC_CSM1.1)CMIP5和AMIP试验结果对模式模拟南亚高压的能力进行了评估。结果表明,BCC_CSM1.1模式对作为北半球高层大气环流活动中心的南亚高压有较好的模拟能力。它能够模拟出南亚高压的气候平均状态、季节变化,对南亚高压脊线的位置、高压中心的位置及其季节变化也有较好的模拟。模式存在的主要问题是高度场和南亚高压强度的模拟结果较观测明显偏弱;模拟的脊线位置在冬半年要比观测略偏南;模拟的南亚高压中心在某些月份与观测有出入,例如,5月南亚高压中心的模拟较观测偏西,夏季南亚高压的双中心的位置与实际也略有差异;模拟的南亚高压强度偏低与多种因素有关。比较耦合模式与单独大气模式模拟的南亚高压强度发现,在给定观测海温的条件下,模拟的误差减小13%~15%。因此可以认为耦合模式的误差大部分来自大气分量。海洋模拟的改进虽然对总体的模拟结果有所改进但贡献不大;比较T106和T42两种分辨率的模式对南亚高压进行模拟结果发现,分辨率的提高明显减小了南亚高压及全球100 h Pa位势高度场的模拟误差。为验证地形强迫对模拟结果的影响,进行了改变青藏高原地形高度的试验,结果表明青藏高原地形高度对南亚高压的强度有明显的影响,高原高度升高将会促使南亚高压及更大范围的高层位势高度场增强。因此,正确给定高原地形这一模式的下边界条件,对模拟结果的改进有重要作用。  相似文献   

6.
应用国家气候中心气候模式(BCC_CSM1.1)CMIP5和AMIP试验结果对模式模拟南亚高压的能力进行了评估。结果表明,BCC_CSM1.1模式对作为北半球高层大气环流活动中心的南亚高压有较好的模拟能力。它能够模拟出南亚高压的气候平均状态、季节变化,对南亚高压脊线的位置、高压中心的位置及其季节变化也有较好的模拟。模式存在的主要问题是高度场和南亚高压强度的模拟结果较观测明显偏弱;模拟的脊线位置在冬半年要比观测略偏南;模拟的南亚高压中心在某些月份与观测有出入,例如,5月南亚高压中心的模拟较观测偏西,夏季南亚高压的双中心的位置与实际也略有差异;模拟的南亚高压强度偏低与多种因素有关。比较耦合模式与单独大气模式模拟的南亚高压强度发现,在给定观测海温的条件下,模拟的误差减小13%~15%。因此可以认为耦合模式的误差大部分来自大气分量。海洋模拟的改进虽然对总体的模拟结果有所改进但贡献不大;比较T106和T42两种分辨率的模式对南亚高压进行模拟结果发现,分辨率的提高明显减小了南亚高压及全球100 h Pa位势高度场的模拟误差。为验证地形强迫对模拟结果的影响,进行了改变青藏高原地形高度的试验,结果表明青藏高原地形高度对南亚高压的强度有明显的影响,高原高度升高将会促使南亚高压及更大范围的高层位势高度场增强。因此,正确给定高原地形这一模式的下边界条件,对模拟结果的改进有重要作用。  相似文献   

7.
利用1961~ 2007年NCEP/NCAR的再分析逐日资料,分析高原主体上空大气环流的季节变化和受到高原影响的东亚大型环流系统的季节变化,以此证明本文得到的“高原普适性划分方法”的合理性.得到的初步结论概括如下:高原主体上空的位势高度、风场、高空温度、降水的季节变化和高原普适性季节划分方法划分的高原四季变化一致,高原南亚高压、副热带高压、副热带西风急流的三个特征指数季节变化和高原普适性季节划分方法划分的高原四季变化一致,这些结论都说明高原普适性季节划分方法划分的高原四季是合理的;风场季节率(500hPa、100hPa)显著区随高度升高向赤道靠近,风场季节率的变化主要和东亚季风的变化有关,大气环流系统季节率的显著说明了大气环流的季节变化,同时也证明了高原普适性季节划分方法的合理性.  相似文献   

8.
南亚高压对青藏高原臭氧谷的动力作用   总被引:3,自引:1,他引:2  
郭栋  周秀骥  刘煜  李维亮  王盘兴 《气象学报》2012,70(6):1302-1311
利用臭氧观测光谱仪/太阳紫外线后向散射仪(TOMS/SBUV)的臭氧总量资料和SAGEⅡ臭氧廓线资料计算了青藏高原区纬向偏差(一个量减去该量的纬圈平均值,定义为该量的纬向偏差)臭氧总量的逐月变化和高原区150-50 hPa高度纬向偏差臭氧量的变化,二者相关显著,相关系数为0.977.由于在150-50 hPa高度,夏季青藏高原臭氧谷最强,南亚高压最活跃,因此,青藏高原臭氧谷与南亚高压可能存在联系.在运行WACCM3模式时,将青藏高原地形高度削减至1500 m,在150-50 hPa高度南亚高压和青藏高原臭氧谷仍存在;该高度上南亚高压强度变小,青藏高原臭氧谷也减弱;南亚高压季节移动发生改变,青藏高原臭氧谷季节变化也随之改变.因此,推测南亚高压可能对青藏高原臭氧谷有重要作用.接着分析了模式输出的青藏高原区经向、纬向和垂直方向的臭氧输送.在南亚高压季节变化的不同阶段和不同方向上,环流对青藏高原臭氧谷的作用明显不同.150-50 hPa,南亚高压上高原时,纬(经)向输送使青藏高原臭氧谷加深(变浅),垂直输送在低(高)层使青藏高原臭氧谷加深(变浅),总的动力作用使青藏高原臭氧谷减弱;南亚高压稳定在高原上空时,纬(经)向输送使青藏高原臭氧谷变浅(加深),垂直输送在中(底和顶)层使青藏高原臭氧谷加深(变浅),总的动力作用使青藏高原臭氧谷加深;在南亚高压从高原撤退时,纬(经)向作用使青藏高原臭氧谷加深(变浅),垂直作用使青藏高原臭氧谷变浅,总的动力作用使青藏高原臭氧谷中(底和顶)层加深;当南亚高压移至热带太平洋时,南亚高压对高原区臭氧影响较弱.  相似文献   

9.
南亚高压季节持续性异常及其与ENSO关系   总被引:3,自引:0,他引:3  
南亚高压是对流层中上层重要的大气活动中心.文中选取200hPa等压面,应用1948—2006年NCEP/NCAR月平均再分析资料、NCAR的CAM3.0大气环流模式,分析了南亚高压强度的季节持续性异常特征及其与ENSO事件的关系,结果表明南亚高压强度的冬—春—夏的季节持续性异常特征,这种长达半年以上的季节持续性异常与ENSO事件存在密切关系。进一步分析发现,南亚高压强度异常程度的时间演变特征与赤道东太平洋海温表征的ENSO信号的演变特征并不一致,南亚高压强度度异常滞后ENSO信号,对ENSO信号的响应从前一年的12月开始,一直持续到当年的9月,1—5月强度异常最强,6—9月强度异常次之。1月Nino3.4指数时滞自相关表征的ENSO事件春季开始,夏秋季发展,冬季成熟,来年春季开始减弱,夏季基水消失。不同海区数值试验结果表明:在ENSO事件成熟期的冬季,南亚高压与赤道东太平洋海温关系密切,在ENSO事件衰减期的春季,与赤道东太平洋和印度洋海温关系密切,在ENSO事件衰减期的夏季,与印度洋海温关系密切。  相似文献   

10.
利用ERA-interim月平均再分析资料、相关分析和信息流方法,分析了1979~2015年夏半年(5~9月)100 hPa上南亚高压与邻近地区臭氧变化的相互作用。结果表明:除7月外,夏半年南亚高压与南亚高压区臭氧低值(简称臭氧低值)存在相互作用。6月和9月南亚高压和臭氧低值强度变化相互影响,而在5月和8月二者的作用仅仅是单向的。在6月南亚高压和臭氧低值的中部和西部边缘,以及9月南亚高压北部和臭氧低值中心区,臭氧低值增强(减弱)可能是南亚高压增强(减弱)的部分原因,南亚高压增强(减弱)也可能是臭氧低值增强(减弱)的部分原因。在6月南亚高压和臭氧低值的东南部、8月南亚高压和臭氧低值的西部和东部,以及9月南亚高压的西部,南亚高压增强(减弱)可能导致臭氧低值增强(减弱)。在5月南亚高压西部和臭氧低值南部,臭氧低值的增强(减弱)可能导致了南亚高压的增强(减弱)。根据相关分析,推测臭氧变化对南亚高压变化的可能影响机制如下:当南亚高压区臭氧浓度出现正异常时,辐射加热在其上部(下部)为负异常(正异常),导致高层(低层)异常辐合(辐散),从而导致下沉异常。高层异常辐合与下沉异常最终使南亚高压异常减弱。而臭氧浓度负异常导致南亚高压呈现正异常的过程与上述过程相反。  相似文献   

11.
青藏高原加热与亚洲环流季节变化和夏季风爆发   总被引:13,自引:1,他引:13       下载免费PDF全文
刘新  吴国雄  刘屹岷  刘平 《大气科学》2002,26(6):781-793
利用逐日NCEP/NCAR再分析资料分析了春夏过渡季节青减高原非绝热加热和大气环流季节变化以及亚洲季风爆发的关系.结果表明,过渡季节的早期(5月中旬以前)青藏高原总非绝热加热与感热加热的时间演变曲线趋势一致,感热加热在过渡季节早期的环流演变中有很重要的作用.青藏高原非绝热加热的时间演变与北半球环流的季节变化和亚洲夏季风爆发有很好的相关.在过渡季节里,青藏高原非绝热加热的变化引起了海-陆热力差异对比的变化,给亚洲夏季风的爆发建立了有利的背景环境,对亚洲夏季风爆发有明显的影响.结果还表明,用各区域纬向风垂直差异的时空分布能更准确地表示季节变化的区域差异.  相似文献   

12.
In this study, the TOMS/SBUV (Total Ozone Mapping Spectrometer/Solar Backscatter Ultraviolet Radiometer) data and SAGE (Stratospheric Aerosol and Gas Experiment) II data were employed to calculate the monthly total zonal ozone deviations over the Tibetan Plateau and the 150?C50-hPa zonal ozone variations. The results show that there is a significant correlation between the two, with a correlation coefficient of 0.977. From 150 to 50 hPa, the ozone valley over the Tibetan Plateau (OVTP) becomes the strongest based on the SAGE II data, and the South Asian high (SAH) is the most active according to the 40-yr reanalysis data of the European Centre for Medium-Range Weather Forecasts (ERA40), so a correlation between the SAH and the OVTP may exist. The WACCM3 (Whole Atmosphere Community Climate Model version 3) simulation results show that both SAH and OVTP could still present within 150?C50 hPa with reduced strength even when the height of the Tibetan Plateau was cut down to 1500 m. It is also shown that the seasonal variation of SAH would result in a matched seasonal variation of the OVTP, which suggests a meaningful effect of SAH on the OVTP. Meanwhile, it is found that the atmospheric circulation would impose different effects on the OVTP, depending on the SAH??s evolution stages and movement directions. At 150?C50 hPa, as the SAH approaches the plateau, the SAH zonal (meridional) transport would make the OVTP deeper (shallower), while the vertical transport of ozone produces a deeper (shallower) OVTP at the lower (higher) level; the combined dynamic effects lead to a weakened OVTP. When the SAH stabilizes over the plateau, the zonal (meridional) transport results in a shallower (deeper) OVTP while the vertical transport would create a deeper (shallower) OVTP at the middle (bottom and top) levels; the combined dynamic effects produce a deeper OVTP. As the SAH retreats from the plateau, the OVTP becomes deeper (shallower) under the zonal (meridional) effect or shallower under the vertical effect; the combined dynamic effects contribute to a deeper (shallower) OVTP at the middle (bottom and top) levels. The SAH would have a weak effect on the OVTP over the plateau when positioned over the tropical Pacific.  相似文献   

13.
The ability of a climate model to reproduce the climatic characters of the South Asia High (SAH) is assessed by analyzing the 110-yr output of a Flexible Coupled GCM, version 0 (FGCM-0). Comparing the results of FGCM-0 with the NCEP/NCAR reanalysis data, the major findings show that FGCM-0 has better results in simulation of the geopotential height field at 100 hPa, and reproduces fairly the main atmospheric circulation centers. However, there are still some differences in the simulated results compared with the reanalysis data. The coupled model also successfully reproduces the mean seasonal variation of the SAH, that is, it moves from the Pacific Ocean to the Asian continent, remaining over the Tibetan Plateau from winter to summer, and then withdraws from the Tibetan Plateau to the Pacific Ocean from summer to winter. However, such observed relationships between the SAH positions and the summer precipitation patterns cannot be fairly reproduced in the FGCM-0.  相似文献   

14.
利用中国气象局成都高原气象研究所建立的5个边界层站(湄潭、巴中、什邡、曲麻莱、狮泉河)2019年的观测资料,对比分析青藏高原及周边地区近地层大气要素变化和陆—气能量交换特征及异同点,探讨其原因。结果表明:(1)青藏高原及周边地区近地层大气温度、相对湿度、风速、感热通量、潜热通量、动量通量均符合一峰一谷的常规日变化特征,气压具有双峰双谷的日变化特征。(2)高海拔台站近地层温度日变幅(12℃)高于周边低海拔地区(4~6℃),季变幅与海拔高度的关系不显著。(3)相对湿度与温度关系密切,相对湿度的垂直结构和日变化都具有明显的区域差异,其垂直梯度夜间显著高于白天,峰值出现时间随夏、秋、春、冬季呈现季节性滞后,而谷值超前。(4)风速春季较大,夏、秋季次之,冬季小,季变幅略小于日变幅;低海拔区域的风速及其日变幅均显著低于高海拔区域。(5)低海拔区域气压季变幅(>13 hPa)远高于日变幅(2.5 hPa左右),而高海拔区域气压季变幅(>3 hPa)略低于日变幅(2 hPa左右)。(6)感热通量春季大、冬季小;感热通量和动量通量在高海拔区域均较高,二者具有较一致的日、季变化特征,表明大气动...  相似文献   

15.
青藏高原抬升加热气候效应研究的新进展   总被引:30,自引:4,他引:26  
对近4年来关于青藏高原加热影响气候的研究进行回顾.首先介绍利用位涡方程和热力适应理论,揭示;夏季高原上空低层气旋式及高层反气旋式环流结构稳定维持的动力学机理.结果表明高原加热作用造成的低层正涡源是低层气旋式环流得以稳定维持的重要原因.而边界层摩擦产生的负位涡是平衡正位涡的主要因素.高原加热还在高原上空形成负位涡,它影响着盛夏的大气环流,是青藏高原上空强大而稳定的反气旋环流得以维持的重要因素.在春夏过渡季节青藏高原非绝热加热对大气环流季节变化以及亚洲季风爆发的影响力方面,进一步确认了感热加热在过渡季节早期(5月中旬以前)环:流演变中的重要作用.青藏高原非绝热加热的时间演变引起了海陆热力差异对比的变化,使副热带高压带首先在孟加拉湾东部断裂,亚洲季风因而在孟加拉湾爆发.结果还表明,用纬向风垂直差异的时空分布能更准确地表示季节变化的区域差异.在青藏高原非绝热加热与北半球环流系统年际变化的联系方面,发现夏季青藏高原的加热强(弱)的年份,高原感热加热气泵(SHAP)高(低)效工作,使高原加热对周边地区低层暖湿空气的抽吸效应和对高层大气向周边地区的排放作用加强(减弱),高原及邻近地区的上升运动,下层辐合和上层辐散均增强(减弱),从而影响着高原和周边地区的环流以及亚洲季风区大尺度环流系统.而且高原的加热强迫还能够激发产生一支沿亚欧大陆东部海岸向东北方向传播的Rossby波列,其频散效应可影响到更远的东太平洋以至北美地区的大气环流.研究还表明,盛夏的南亚高压存在"青藏高压型"和"伊朗高压型"的双模态,它们与高原加热状态有关,且显著地与亚洲季风区的气候分布密切联系.  相似文献   

16.
利用1979-2019年多年平均5-8月的逐日气象资料,采用EOF,MV-EOF、相关分析和合成分析等方法,对夏季青藏高原-孟加拉湾的大气热源与中国东部暴雨的时空演变特征及两者之间的联系进行探讨.研究结果表明:MV-EOF能够很好地表现不同要素的空间分布特征及其时间演变之间的联系.结果显示:在气候平均状态下,强降水事件...  相似文献   

17.
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.  相似文献   

18.
The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model‘s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exis tin this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.  相似文献   

19.
The seasonal variations of the intensity and location of the East Asian subtropical westerly jet (EAWJ) and the thermal mechanism are analyzed by using NCEP/NCAR monthly reanalysis data from 1961 to 2000. It is found that the seasonal variation of the EAWJ center not only has significant meridional migration, but also shows the rapid zonal displacements during June-July. Moreover, there exists zonal inconsistency in the northward shift process of the EAWJ axis. Analysis on the thermal mechanism of the EAWJ seasonal variations indicates that the annual cycle of the EAWJ seasonal variation matches very well with the structure of the meridional difference of air temperature, suggesting that the EAWJ seasonal variation is closely related to the inhomogeneous heating due to the solar radiation and the land-sea thermal contrast. Through investigating the relation between the EAWJ and the heat transport, it is revealed that the EAWJ weakens and shifts northward during the warming period from wintertime to summertime, whereas the EAWJ intensifies and shifts southward during the cooling period from summertime to wintertime. The meridional difference of the horizontal heat advection transport is the main factor determining the meridional temperature difference. The meridional shift of the EAWJ follows the location of the maximum meridional gradient of the horizontal heat advection transport. During the period from April to October, the diabatic heating plays the leading role in the zonal displacement of the EAWJ center. The diabatic heating of the Tibetan Plateau to the mid-upper troposphere leads to the rapid zonal displacement of the EAWJ center during June-July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号