首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kimberlites from the Kaapvaal craton have sampled numerous mantlegarnet lherzolites in addition to garnet harzburgites. Traceelement characteristics of constituent clinopyroxenes allowtwo groups of garnet lherzolites to be distinguished. Traceelement compositions of all clinopyroxenes are characterizedby enrichment in light rare earth elements (LREE) and largeion lithophile elements and by a relative depletion in Ti, Nb,Ta, and to a lesser extent Zr and Hf. However, the LREE enrichmentand the depletion in Nb and Zr (Hf) are less in the Type 1 clinopyroxenesthan in the Type 2 clinopyroxenes. Our study suggests that thetwo melts responsible for the metasomatic imprints observedin the two garnet lherzolite groups are highly alkaline maficsilicate melts. Type 1 clinopyroxenes that have trace elementsimilarities to those of PIC (Phlogopite–Ilmenite–Clinopyroxene)rocks appear to have crystallized from, or been completely equilibratedwith, the same melt related to Group I kimberlite magma. TheType 2 clinopyroxenes have trace element similarities to thoseof MARID (Mica– Amphibole–Rutile–Ilmenite–Diopside)rocks and are therefore probably linked to melt related to GroupII kimberlite magma. KEY WORDS: garnet lherzolites; Kaapvaal craton; mantle xenoliths; mantle metasomatism; trace elements  相似文献   

2.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   

3.
A detailed petrographic, major and trace element and isotope (Re–Os) study is presented on 18 xenoliths from Northern Lesotho kimberlites. The samples represent typical coarse, low-temperature garnet and spinel peridotites and span a PT range from 60 to 150 km depth. With the exception of one sample (that belongs to the ilmenite–rutile–phlogopite–sulphide suite (IRPS) suite first described by [B. Harte, P.A. Winterburn, J.J. Gurney, Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: Menzies, M. (Ed.), Mantle metsasomatism. Academic Press, London 1987, 145–220.]), all samples considered here have high Mg# and show strong depletion in CaO and Al2O3. They have bulk rock Re depletion ages (TRD) >2.5 Ga and are therefore interpreted as residua from large volume melting in the Archaean. A characteristic of Kaapvaal xenoliths, however, is their high SiO2 concentrations, and hence, modal orthopyroxene contents that are inconsistent with a simple residual origin of these samples. Moreover, trace element signatures show strong overall incompatible element enrichment and REE disequilibrium between garnet and clinopyroxene. Textural and subtle major element disequilibria were also observed. We therefore conclude that garnet and clinopyroxene are not co-genetic and suggest that (most) clinopyroxene in the Archaean Kaapvaal peridotite xenoliths is of metasomatic origin and crystallized relatively recently, possibly from a melt precursory to the kimberlite.

Possible explanations for the origin of garnet are exsolution from a high-temperature, Al- and Ca-rich orthopyroxene (indicating primary melt extraction at shallow levels) or a majorite phase (primary melting at >6 GPa). Mass balance calculations, however, show that not all garnet observed in the samples today is of a simple exsolution origin. The extreme LREE enrichment (sigmoidal REE pattern in all garnet cores) is also inconsistent with exsolution from a residual orthopyroxene. Therefore, extensive metasomatism and probably re-crystallization of the lithosphere after melt-depletion and garnet exsolution is required to obtain the present textural and compositional features of the xenoliths. The metasomatic agent that modified or perhaps even precipitated garnet was a highly fractionated melt or fluid that might have been derived from the asthenosphere or from recycled oceanic crust. Since, to date, partitioning of trace elements between orthopyroxene and garnet/clinopyroxene is poorly constrained, it was impossible to assess if orthopyroxene is in chemical equilibrium with garnet or clinopyroxene. Therefore, further trace element and isotopic studies are required to constrain the timing of garnet introduction/modification and its possible link with the SiO2 enrichment of the Kaapvaal lithosphere.  相似文献   


4.
The Kuruman Kimberlite Province is comprised of 16 small pipes and dikes and contains some of the oldest known kimberlites (>1.6 Ga). In this study, 12 intrusions are subdivided into three groups with distinct petrology, age, and geochemical and isotopic compositions: (1) kimberlites with groundmass perovskites defining a Pb–Pb isochron age of 1787 ± 69 Ma, (2) orangeite with a U–Pb perovskite age of 124 ± 16 Ma, and (3) ultramafic lamprophyres (aillikite and mela-aillikite) with a zircon U–Pb age of 1642 ± 46 Ma. The magma type varies across the Province, with kimberlites in the east, lamprophyres in the west and orangeite and ultramafic lamprophyres to the south. Differences in the age and petrogenesis of the X007 orangeite and Clarksdale and Aalwynkop aillikites suggest that these intrusions are probably unrelated to the Kuruman Province. Kimberlite and orangeite whole-rock major and trace element compositions are similar to other South African localities. Compositionally, the aillikites typically lie off kimberlite and orangeite trends. Groundmass mineral chemistry of the kimberlites has some features more typical of orangeites. Kimberlite whole-rock Sr and Nd isotopes show zoning across the Province. When the kimberlites erupted at ~1.8 Ga, they sampled a core volume (ca 50 km across) of relatively depleted SCLM that was partially surrounded by a rim of more metasomatized mantle. This zonation may have been related to the development of the adjacent Kheis Belt (oldest rocks ~2.0 Ga), as weaker zones surrounding the more resistant core section of SCLM were more extensively metasomatized.  相似文献   

5.
《Precambrian Research》1986,31(3):275-289
Chemical data from sedimentary and igneous rocks of the Kaapvaal Craton have been used to trace the occurrence of highly fractionated K2O-rich granites with pronounced negative Eu-anomalies back to the early Archaean. From the sediments of the Fig Tree Group (about 3.4 Ga-old) and granite pebbles in the overlying Moodies Group it was estimated that the igneous and metamorphic part of the continental crust at that time already contained up to about 35% of such granites. Their formation requires the presence of a thick continental crust to allow intracrustal partial melting with plagioclase as a residual phase, and the intrusion of the resulting granites at high levels within the crust. Save for some small remnants these Eu-depleted Archaean granites have since been removed by erosion.Shales of the 3.0 Ga-old Pongola Supergroup reflect only small source areas and contain considerable amounts of material derived from residual soils. The Eu-anomalies of the Pongola shales suggest up to 30% Eu-depleted granites in the source area. The shales of the Witwatersrand Supergroup (about 2.6 Ga-old) — with Eu-anomalies as low as 0.45 — reflect a source area already having typical post-Archaean crustal compositions.The Th-concentrations in South African shales support this conclusion and typical post-Archaean concentrations of above 10 ppm are found already in the early Archaean Sheba shales. Uranium and thorium mineralization has also occurred on the Kaapvaal Craton since the early Archaean.The South African late Proterozoic and Phanerozoic sedimentary record of Eu-anomalies and Th-concentrations confirms the trend observed on other cratonic areas and supports the concept of worldwide uniformity in crustal composition since the end of the Archaean. On the Kaapvaal Craton crustal growth and consolidation began 500–600 Ma earlier than in other parts of the world. The Kaapvaal Craton thus appears to represent a ‘cold spot’ on the face of the Earth.  相似文献   

6.
The Vredefort dome in the Kaapvaal Craton was formed as a result of the impact of a large meteorite at 2.02 Ga. The central core of Archaean granitic basement rocks is surrounded by a collar of uplifted and overturned strata of the Witwatersrand Supergroup, exposing a substantial depth section of the Archaean crust. Orthogneisses of the core show little variation in whole-rock δ 18O value, with the majority being between 8 and 10‰, with a mean of 9.2‰ (n = 35). Quartz and feldspar have per mil differences that are consistent with O-isotope equilibrium at high temperatures, suggesting minimal interaction with fluids during subsequent cooling. These data refute previous suggestions that the Outer Granite Gneiss (OGG) and Inlandsee Leucogranofels (ILG) of the core represent middle and lower crust, respectively. Granulite-facies greenstone remnants from the ILG have δ 18O values that are on average 1.5‰ higher than the ILG host rocks and are unlikely, therefore, to represent the residuum from the partial melting event that formed the host rock. Witwatersrand Supergroup sedimentary rocks of the collar, which were metamorphosed at greenschist-to amphibolite-facies conditions, generally have lower δ 18O values than the core rocks with a mean value for metapelites of 7.7‰ (n = 45). Overall, through an ∼20 km thick section of crust, there is a general increase in whole-rock δ 18O value with increasing depth. This is the reverse of what is normal in the crust, largely because the collar rocks have δ 18O values that are unusually low in comparison with metamorphosed sedimentary rocks worldwide. The collar rocks have δD values ranging from −35 to −115‰ (average −62‰, n = 29), which are consistent with interaction with water of meteoric origin, having a δD of about −25 to −45‰. We suggest that fluid movement through the collar rocks was enhanced by impact-induced secondary permeability in the dome structure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Eclogite xenoliths from the mantle have experienced a wide variety of processes and P-T conditions, many of which are recorded in the mineral compositions and textures. Exsolution of garnet from clinopyroxene is one such texture, occurring in a minority of mantle eclogites. New analyses of clinopyroxene and garnet of eclogite xenoliths from kimberlites at Bellsbank (South Africa) and Obnazhënnaya (Yakutia, Russia) are presented here, and these are combined with data from the literature. Exsolution of garnet from clinopyroxene is generally lamellar, although lens-shaped garnets are also present. Major- and trace-element characteristics show a wide range of compositions and include eclogite Groups A, B, and C. Rare-earth element (REE) concentrations of garnet and pyroxene were determined by SIMS, and the REE patterns are subtly different from those in ordinary eclogites. Differences include the absence of prominent Eu anomalies in samples of this study and differences in the slopes of chondrite-normalized REE patterns. It is possible that these signatures are unique to exsolved eclogites, a result of subsolidus elemental partitioning during exsolution. Some reconstructed whole-rock compositions are aluminuous; comparison with ordinary eclogites shows only minor differences, implying a similar origin. If the immediate precursor to the exsolved eclogites was a monomineralic pyroxenite, the excess aluminium was tied up in Tschermak's molecule, although the occasional presence of kyanite exsolution lamellae is indicative of a Ca-Eskola component. Reconstructed pyroxenes from kyanite- and corundum-rich samples contain unrealistic amounts of aluminium for mantle pyroxenes. A protolith (or parental pyroxene) threshold of 24% Al2O3 may exist, above which (as in a plagioclase cumulate) the final assemblage is kyanite- and/or corundum-bearing.  相似文献   

8.
Textural evidence in a composite garnet harzburgite mantle xenolith from Kimberley, South Africa, suggests metasomatism of a severely melt-depleted substrate by a siliceous, volatile-rich fluid. The fluid reacted with olivine-rich garnet harzburgite, converting olivine to orthopyroxene, forming additional garnet and introducing phlogopite, and small quantities of sulfide and probable carbonate. Extensive reaction (>50%) forming orthopyroxenite resulted from channelized flow in a vein, with orthopyroxene growth in the surrounding matrix from a pervasive grain-boundary fluid. The mineralogy of the reaction assemblage and the bulk composition of the added component dominated by Si and Al, with lesser quantities of K, Na, H, C and S, are consistent with experimental studies of hybridization of siliceous melts or fluids with peridotite. However, low Na, Fe and Ca compared with melts of eclogite suggest a fluid phase that previously evolved by reaction with peridotitic mantle. Garnet and phlogopite trace element compositions indicate a fluid rich in large-ion lithophile (LIL) elements, but poor in high field-strength elements (HFSE), qualitatively consistent with subduction zone melts and fluids. An Os isotope (TRD) model age of 2.97 ± 0.04 Ga and lack of compositional zonation in the xenolith indicate an ancient origin, consistent with proposed 2.9 Ga subduction and continental collision in the Kimberley region. The veined sample reflects the silicic end of a spectrum of compositions generated in the Kimberley mantle lithosphere by the metasomatizing effects of fluids derived from oceanic lithosphere. These results provide petrographic and chemical evidence for fluid-mediated Si-, volatile- and trace-element metasomatism of Archean mantle, and support models advocating large-scale modification of regions of Archean subcontinental mantle by subduction processes that occurred in the Archean.  相似文献   

9.
A well exposed succession of spinifex-textured komatiite flows is reported from the Archaean Nondweni greenstone belt located near the southern margin of the Kaapvaal Craton. The flows are relatively thin (1–5 m) compared to similar occurrences in other greenstone belts. They are characterised by well developed cone structures of highly elongate amphibole crystals (after augite) which fan downwards from the tops of the flows. Extreme development of coned spinifex has not been reported from other greenstone belts and points to specific thermal conditions prevailing in the Nondweni environment. The zones of bladed spinifex are contained between layers of random spinifex and overlie a lower cumulus layer originally of augite, orthopyroxene and minor olivine. The observed major and trace element distributions through a 1.7 m thick spinifex-textured flow are consistent with a model involving concentration of phenocryst phases resulting in significant fractionation upwards in the flow. Approximately 40% of the spinifex-textured phenocrysts grew in situ after the lithological units were established. Collapse and displacement of the coned crystal networks, originally attached to the top of the flow, are shown to have influenced the distribution of liquid within the flow and accentuated the fractionation. Associated with the spinifex-textured units are massive aphyric and brecciated flows which show distinct chemical cycles through the succession. The brecciated zones have compositions with <18% MgO and are characterised by ovoid bodies that are not pillows and may represent magmatic reworking and movement of a partly congealed flow. Post-solidus alteration is considered to have caused early hydration of the original mineralogy and also introduced SiO2 and Na2O into the upper part of the flow by way of microfractures. The observed alteration is different to that of Mid-Ocean Ridge basalts, and a subaerial/shallow water environment is suggested.  相似文献   

10.
Sapphirine-bearing granulites, together with sapphirine-free granulites and eclogites, occur as xenoliths in the kimberlite of the Lace diatreme that penetrates the Kaapvaal craton, S. Africa. Absence of (calculated) Fe3+ in sapphirine, garnet and sillimanite, together with presence of graphite and sulphides, suggests highly reducing conditions of metamorphism. Chemical considerations and comparisons with experimental investigations suggest metamorphism of a sedimentary (?chlorite-montmorillonite) protolith at 900–1000° C and > 10 Kb; high Cr in the assemblage may point to a basic/ultrabasic precursor. The xenoliths indicate the presence of a very-high-grade granulite terrain, possibly similar to Enderby Land (Antarctica), beneath the Kaapval craton.  相似文献   

11.
12.
满发胜 《矿床地质》1985,4(1):47-53
近年来,人们利用岩石中稀土元素(REE)分布模式,在区分岩石类型、探讨岩石的成因、物质来源及演化历史等问题上积累了许多资料。作者对我国华南地区几个与钨矿有成因联系的花岗岩类岩体进行了系统的稀土元素分析;并根据所获得的稀土模式特征,结合野外地质观察和同位素地质研究成果,对其岩石类型、成因及物质来源等问题进行了讨论。其目的在于为该类型钨矿的找矿和成因理论研究提供佐证。  相似文献   

13.
Detailed structural mapping on NE Eyre Peninsula, South Australia, has led to a revised stratigraphy and model of sedimentation for Early Proterozoic metasediments of the Gawler Craton. Four stages of deformation have been recognised; three stages are associated with the Kimban Orogeny (c. 1820–1580 Ma) and a fourth stage is known as the Wartakan Event (c. 1500–1450 Ma). The recognition of major D2 folds has shown the previously used stratigraphy to be incorrect and has necessitated its revision. At the base of the sequence, unconformably overlying a 2300 Ma or older basement, is the Warrow Quartzite. A transgressive cycle of schist, dolomite (Katunga Dolomite) and iron formation (Lower Middleback Jaspilite) overlies the quartzite, and this is overlain in turn by a regressive semipelitic unit containing local amphibolites (Cook Gap Schist), and another transgressive iron‐formation bearing cycle (Upper Middleback Jaspilite). At the top of the sequence is the Yadnarie Schist. All units overlying the older basement to the top of the Yadnarie Schist are defined collectively as the Hutchison Group. The Middle‐back ‘Group’ consisting of units from the top of the Warrow Quartzite to the base of the Yadnarie Schist is redefined as the Middleback Subgroup. Sediments of the Hutchison Group were probably derived from 2300+ Ma rocks on western Eyre Peninsula and deposited on a shallow platform now oriented approximately N‐S.  相似文献   

14.
This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ~60–110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.  相似文献   

15.
Previous models for the temporal evolution of greenstone belts and surrounding granitoid gneisses in the northern Kaapvaal Craton can be revised on the basis of new single zircon ages, obtained by conventional U---Pb dating and Pb---Pb evaporation. In the Pietersburg greenstone belt, zircons from a metaquartz porphyry of the Ysterberg Formation yielded an age of 2949.7±0.2 Ma, while a granite intruding the greenstones, and deformed together with them, has an age of 2853 + 19/−18 Ma. These data show felsic volcanism in this belt to have been coeval with felsic volcanism in the Murchison belt farther east, and the date of 2853 Ma provides an older age limit for deformation in the region. In contrast, a meta-andesite of the Giyani greenstone belt has a zircon age of 3203.3±0.2 Ma, while a younger and cross-cutting feldspar porphyry has an emplacement age of 2874.1±0.2 Ma. The meta-andesite is intercalated with various mafic and ultramafic rocks and, therefore, the age of 3.2 Ga appears plausible for the bulk of the Giyani greenstones.Granitoid gneisses surrounding the Pietersburg and Giyani belts vary in composition from tonalite to granite and texturally from well-layered to homogeneous but strongly foliated. These rocks yielded zircon ages between 2811 and 3283 Ma. The pre-3.2 Ga gneisses are polydeformed and may have constituted a basement to the Giyani greenstone sequence, while the younger gneisses are intrusive into the older gneiss assemblage and/or into the greenstones. The Giyani and Pietersburg belts probably define two separate crustal entities that were originally close together but were later displaced by strike-slip movement.  相似文献   

16.
Coarse-grained, granular spinel lherzolites xenoliths from the Premier kimberlite show evidence of melt extraction and metasomatic enrichment, documenting a complex history for the shallow mantle beneath the Bushveld complex. Compositions of orthopyroxene, clinopyroxene and spinel indicate equilibration within the spinel–peridotite facies of the upper mantle, at depths from 80 to 100 km and temperatures from 720 to 850 °C. Bulk compositions have lower Mg-number [atomic 100 Mg/(Mg + Fe*)] than previously studied spinel peridotites from Premier, and have higher Mg/Si than low-temperature coarse grained garnet lherzolites, suggesting shallower melting conditions or metasomatic enrichment. Clinopyroxene in one sample is highly LREE-depleted indicating very minor modification of a residue of 20% melt extraction, whereas the calculated REE pattern for a melt in equilibrium with a mildly LREE-depleted sample is similar to MORB or late Archean basalt, possibly related to the Bushveld Complex. Bulk and mineral compositions suggest minimal refertilization by silicate melts in four out of six samples, but REE patterns indicate introduction of a LIL-enriched component that may be related to kimberlite.  相似文献   

17.
The basement areas in Southeast Libya, South Egypt and North Sudan, west of the Nile, between Gebel Uweinat and the Bayuda Desert, are part of an approximately 1000-km-wide, complexly folded, polymetamorphic zone with a regional N-NNE-NE-ENE trend of foliation and fold axis. Since this belt extends southwestward into the area of Zalingei in the southern Darfur block (West Sudan), it is named the Northern Zalingei fold zone. Sr and Nd isotopic studies suggest that this zone is older than Pan-African and further indicate that, apart from Archean rocks in the Gebel Uweinat area, this belt is of Early-Middle Proterozoic age. An Early-Middle Proterozoic three-stage deformational and anatectic event established the present-day fold and fault geometry in the western parts of this zone in the Gebel Uweinat—Gebel Kamil area. The Pan-African tectono-thermal episode was most effective in the eastern part of the belt, near the boundary with the Nubian Shield volcano-sedimentary-ophiolite-granitoid assemblages. It caused migmatization, granite emplacement, mylonitization and large-scale wrench faulting which was related to Late Proterozoic accretionary and collisional events of the Arabian-Nubian Shield with the margin of the East Saharan Craton.  相似文献   

18.
The Kaapvaal Craton of South Africa comprises an Archaean core of ≈3.5 Ga lithospheric and crustal rocks surrounded by younger accreted terrains of ≈3.0–2.7 and ≈2.1–1.9 Ga. The craton is covered by relatively undeformed 3.0–2.4 Ga supracrustal rocks, which show the effects of thermal and hydrothermal interaction. Part of this activity is manifested by a large number of epigenetic Pb–Zn (±Ag, Au, Cu, F) deposits in the cover rocks of the Kaapvaal Craton. These include small volcanic and breccia hosted deposits in mafic and felsic volcanic rocks of the 2.7 Ga Ventersdorp Supergroup and the Mississippi Valley-type (MVT) deposits in the carbonates of the Transvaal Supergroup.MVT mineralization at the Pering (and other Zn–Pb deposits) is hosted in fracture-generated N–S breccia bodies in the Paleoproterozoic carbonate succession of the western Kaapvaal Craton. The fluids carrying the metals were focused in vertical bodies within the fracture zones (FZ), the metals and the sulphur being carried together and precipitated in organic-rich sectors of the basin. Two small Pb–Zn deposits within mafic rocks of the Ventersdorp Supergroup, stratigraphically below the basin-hosted MVTs on the southwestern part of the Kaapvaal Craton have secondary chlorite which is extremely Rb-rich, associated with the mineralization. This chlorite and the associated altered basaltic host rocks give a Rb–Sr date of ≈1.98 Ga, and the associated galena Pb isotope data plot on the same array as those of other Pb–Zn deposits, the radiogenic intercept giving a date of ≈2.0 Ga. We interpret these data to indicate a craton-wide epigenetic fluid-infiltration event, which exploited the Maquassie Quartz Porphyry (MQP) as the aquifer and metal source.Sr isotopic results for the ore-zone gangue minerals show highly radiogenic 87Sr/86Sr ratios (>0.710) which support earlier models that the origin of radiogenic Sr isotopic composition in the calcite cements is the felsic tuffs (MQP) of the Ventersdorp Supergroup occurring at deeper levels within the basin. Relationships between δ18O and δ13C performed on carbonate cements within the aquifers are complex: the range in δ13C for some of the cements represents a mixture from two sources and with a progression from heavy carbon in the host to somewhat lighter carbon in the cements. Similarly, the lighter δ18O values have a narrow range indicative of rapid exchanges between hydrous fluid and rock.  相似文献   

19.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

20.
Following terrane amalgamation of early oceanic lithosphere, the southern and central parts of the Kaapvaal Craton were a coherent unit by 3.1 Ga. Juxta-position of the northern and western granitoid-greenstone terranes including the Murchison Island Arc was the result of terrane accretion that started at 3.1 Ga. The culmination of these events was the collision of the Kaapvaal Craton, the pre-cratonic Zimbabwe block and the Central Zone to generate the Limpopo granulite gneiss terrane. Coeval with these orogenic events the central Kaapvaal Craton underwent extension to accommodate the development of the Dominion, Witwatersrand/Pongola and Ventersdorp basins. The craton scale Thabazimbi-Murchison Lineament development during the 3.1 Ga accretion event and continued to influence the tectonic evolution of the Kaapvaal block throughout the period under review as indicated by the syn-sedimentary tectonics of the > 2.64 Ga Wolkberg Group, overlying Black Reef Formation and the Transvaal Sequence. The Transvaal and Griqualand West basins developed in the Late Archaean (> 2.55 Ga) with basin dynamics influenced by far field stresses related to the Limpopo Orogeny. During this period the Thabazimbi-Murchison Lineament lay close to the northern margin of the depository. Reactivation of the Lineament between 2.4 and 2.2 Ga resulted in inversion of the Transvaal Basin and formation of the northward verging Mhlapitsi fold and thrust belt. The half-graben setting envisaged for the deposition of the Pretoria Group was influenced by the Thabazimbi-Murchison Lineament as was the emplacement and subsequent deformation of the Bushveld Complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号