首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Single crystal Raman spectra of pyrite-type RuS2, RuSe2, OsS2, OsSe2, PtP2, and PtAs2 are presented and discussed with reference to the energies of the X-X stretching modes x-x (A g, F g) and the X2 librations (E, 2Fg). The main results obtained are (i) strong Raman resonance effects, (ii) different sequences for x-x (A g) and (E g), i.e., R_{x_2 } $$ " align="middle" border="0"> for PtP2 and PtAs2 and R_{x_2 } $$ " align="middle" border="0"> for OsS2, owing to the interplay of intraionic and interionic lattice forces, (iii) greater strengths for the intraionic P-P and As-As bonds compared to the S-S and Se-Se bonds, respectively, and (iv) a strong influegnce of the metal ions on the strength of the X-X bonds.This is contribution LXI of a series of papers on lattice vibration spectra  相似文献   

2.
Different batches of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2, DTS-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1, DTS-1 and GSP-1 have been analysed by isotope dilution using thermal ionisation mass spectrometry (ID-TIMS) and by multi-ion counting spark source mass spectrometry (MIC-SSMS). The concentrations of K, Rb, Sr, Ba and the rare earth elements were determined with overall analytical uncertainties of better than 1% (ID-TIMS) and 3% (MIC-SSMS). The analyses of different aliquots and batches of BCR-2, BHVO-2, AGV-2 and GSP-2, respectively, agree within 1%, i.e. approximately the analytical uncertainties of the data. This indicates an homogeneous distribution of the trace elements in these RMs. Differences in element concentrations of up to 17% in different aliquots of the depleted RM DTS-2 are outside the analytical uncertainty of our data. They may be attributed to a slightly heterogeneous distribution of trace elements in this dunite sample. Our trace element data for BCR-2, BHVO-2, AGV-2 and GSP-2 agree within about 3% with preliminary reference values published by the USGS. They also agree within 1-6% with those of the original RMs BCR-1, BHVO-1, AGV-1 and GSP-1. Large compositional differences are found between DTS-2 and DTS-1, where the concentrations of K, Rb, Sr and the light REE differ by factors of 2 to 24.  相似文献   

3.
Migration of uranium and arsenic in aquatic environments is often controlled by sorption on minerals present along the water flow path. To investigate the sorption behaviour, batch experiments were conducted for uranium and arsenic as single components and also solutions containing both uranium and arsenic in the presence of SiO2, Al2O3, TiO2 and FeOOH at a pH ranging from 3 to 9. In solutions containing only U(VI) or As(V) with the minerals, the sorption of U(VI) was low at acidic pH range and increases with increasing pH, whereas As(V) showed opposite sorption behaviour to Al2O3, TiO2 and FeOOH from acidic pH range to alkaline condition. For the As(V)–SiO2 system, the sorption was low for almost all pH. Sorption of U(VI) and As(V) on SiO2 and FeOOH is almost similar in solutions containing either U(VI) or As(V) separately, or both together. In the U(VI)–As(V)–Al2O3 system, a significant retardation in uranyl sorption and an enhancement in arsenate sorption on Al2O3 were observed for a wide range of pH. The sorption behaviour of U(VI) and As(V) was changed when Al2O3 was replaced by TiO2, where an increase in sorption was observed for both elements. The sorption behaviour of uranyl and arsenate in the U(VI)–As(V)–TiO2 system gives evidence for the formation of uranyl–arsenate complexes. The change in sorption retardation/enhancement of U(VI) and As(V) could be explained by the formation of uranyl–arsenate complexes or due to the competitive sorption between uranyl and arsenate species.  相似文献   

4.
We present data for the concentrations of eleven rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu) in eleven international geochemical reference materials obtained by isotope dilution multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We have analysed both rock powders and synthetic silicate glasses, and the latter provide precise data to support the use of these as reference materials for in situ trace element determination techniques. Our data also provide precise measurements of the abundance of mono-isotopic Pr in both glasses and powders, which allows more accurate constraints on the anomalous redox-related behaviour of Ce during geochemical processes. All materials were analysed in replicate providing data that typically reproduce to better than one percent. Sm/Nd ratios in all these materials also reproduce to better than 0.2% and are accurate to < 0.2% and can thus be used as calibrants for Sm-Nd geochronology. Our analyses agree well with existing data on these reference materials. In particular, for NIST SRM 610, USGS BHVO-2, AGV-1 and AGV-2, our measured REE abundances are typically within < 2% (and mostly 1%) of REE concentrations previously determined by isotope dilution analysis and thermal ionisation mass spectrometry, consistent with the higher degree of precision and accuracy obtained from isotope dilution techniques. Close agreement of results between basaltic glass reference materials USGS BHVO-2G and BCR-2G and the BHVO-2 and BCR-2 powders from which they were created suggests that little fractionation, concentration or dilution of REE contents occurred during glass manufacture.  相似文献   

5.
We have measured 87Sr/86Sr and 143 Nd/144 Nd isotope ratios in different batches and aliquots of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1 and GSP-1 by thermal ionisation mass spectrometry. In addition, we also analysed the eight Max-Planck-Institut-Dingwell (MPI-DING) reference glasses. Nearly all isotope ratios obtained in the different aliquots and batches agree within uncertainty limits indicating excellent homogeneity of the USGS powders and the MPI-DING glasses. With the exception of GSP-2, the new USGS RMs are also indistinguishable from the ratios found in the original USGS RMs (87Sr/86Sr: 0.704960, 0.704958 (BCR-1, -2), 0.703436, 0.703435 (BHVO-1, -2), 0.703931, 0.703931 (AGV-1, -2); 143 Nd/144 Nd: 0.512629, 0.512633 (BCR-1, -2), 0.512957, 0.512957 (BHVO-1, -2); 0.512758, 0.512755 (AGV-1, -2)). This means that for normalisation purposes in Sr and Nd isotope geochemistry BCR-2, BHVO-2 and AGV-2 can well replace BCR-1, BHVO-1 and AGV-1 respectively.  相似文献   

6.
7.
硫酸盐是大气颗粒物的重要组分,SO2与矿质颗粒物的非均相反应可能是硫酸盐和水溶性铁形成的重要途径之一,但目前对该反应途径的研究比较有限.本研究开展了不同相对湿度条件下SO2((7.14±0.29)μg/L)、NO2((5.13±0.21)μg/L)与针铁矿、磁铁矿、赤铁矿的非均相反应,定量分析了产物硫酸盐、硝酸盐以及水...  相似文献   

8.
The measurement of concentrations of volatile species in soil gases has potential for use in geochemical exploration for concealed ore deposits and for monitoring of subsurface contaminants. However, the interpretation of anomalies in surficial gases can be difficult because soil-gas concentrations are dependent on both meteorological and environmental conditions.For this study, concentrations of He, CO2, O2 and N2 and meteorological conditions were monitored for 10–14 months at eight nonmineralized sites in both humid and dry environments. Gases were collected at 0.6–0.7-m depth at seven sites. At one site, gases were collected from 0.3-, 0.6-, 1.2-, and 2.0-m depths; diurnal monitoring studies were conducted at this site also. Rain and snowfall, soil and air temperatures, barometric pressure, and relative humidity were monitored at all the sites. The sand, silt and clay content, and the organic carbon content of surficial soil were measured at each site.Meteorological conditions generally affected He and CO2 concentrations in the same way at all the sites; however, these effects were modified by local environmental conditions. Both seasonal and diurnal concentration changes occurred. The most important seasonal concentration changes were related to rain and snowfall and soil and air temperatures. Seasonal changes tended to be larger then the diurnal changes, but both could be related to the same processes. Local conditions of soil type and organic content affected the amount of pore space and moisture present in the soil and therefore the soil-gas concentrations.  相似文献   

9.
《Gondwana Research》2013,23(3-4):799-809
Externally derived, pure CO2 that mixes with a carbon-(under)saturated C-O-H fluid in lower crustal granulites may result in graphite precipitation if the host-rock oxygen fugacity (fO2rock) is below the upper fO2 limit of graphite. The maximum relative amount of graphite that can precipitate varies between a few mol% up to more than 25 mol%, depending on pressure, temperature, and host-rock redox state. The maximum relative amount of graphite that can precipitate from an infiltrating CO2 fluid into a dry granulite (CO fluid system) varies between zero and a few mol%. Thermodynamic evaluation of the graphite precipitation process shows that CO2 infiltration into lower crustal rocks does not always result in a carbon (super)saturated fluid. In that case, graphite precipitation is only possible if carbon saturation can be reached as a result of the reaction CO2  CO + ½ O2. Graphite that has been precipitated during granulite facies metamorphic conditions can subsequently be absorbed by a COH fluid during retrograde metamorphism. It is also possible, however, that significant amounts of graphite precipitate from a COH fluid during retrograde metamorphism. This study shows that interpreting the presence or absence of graphite in granulites with respect to CO2 infiltration requires detailed information on the PTfO2rock conditions, the relative amount of CO2 that infiltrates into the rock, and whether H2O is present or not.  相似文献   

10.
LIOU  J. G. 《Journal of Petrology》1971,12(2):379-411
Hydrothermal investigation of the bulk composition CaO.Al2O3.4SiO2+excessH2O has been conducted using conventional techniques over thetemperature ranges 200–450 °C and 500–6000 barsPfluid. A number of reactions have been studied by employingmineral mixtures consisting of reactants and products in about9: 1 and 1: 9 ratios. The phase relations were deduced fromrelatively long experiments by observing which seeded assemblagedisappeared or decreased markedly in one of the paired run charges. Laumontite was synthesized in the laboratory, probably for thefirst time. Laumontite was grown from seeded wairakite to over99 per cent using a weak NaCl solution. The refractive indicesof the synthetic material are about = 1.504 and = 1.514. Theaverage unit cell dimensions are a0 = 14.761±0.005 Å;b0 = 13.077±0.005 Å; c0 = 7.561±0.003 Å;and ß = 112.02°±0.04°. Within the errorof measurement, the optical properties and cell parameters arein good agreement with those of natural laumontite. The equilibriumdehydration of laumontite involves two reactions: (1) laumontite= wairakite+2H2O, passing through about 230 °C at 0.5 kb,255±5 °C at 1 kb, 282±5 °C at 2 kb, 297±5°C at 3 kb and 325±5 °C at 6 kb; and (2) laumontite= lawsonite+2 quartz+2H2O, taking place at about 210 °Cat 3 kb and 275 °C at 3.2 kb. Above 300 °C, the equilibriumcurve for the solid-solid reaction (3) lawsonite+2 quartz =wairakite passes through 305 °C, 3.4 kb and 390 °C,4.4 kb. Equilibrium has been demonstrated unambiguously forthe above three reactions. The hydrothermal decomposition ofnatural laumontite above its own stability limit appears tobe a very slow process. Combined with previously published equilibria determined hydrothermallyfor wairakite, the phase relations are further investigatedby chemographic analysis interrelating the phases, laumontite,wairakite, lawsonite, anorthite, prehnite+kaolinite, and 2 pumpellyite+kaolinitein the system CaAl2Si2O8-SiO2-H2O. This synthesis allowed theconstruction of a semiquantitative petrogenetic grid applicableto natural parageneses and the delineation of the physical conditionsfor the various low-grade metamorphic facies in low µCO2environments. The similar stratigraphic zonations, consistentlyfound in a variety of environments, are recognized to be a functionof burial depth, geothermal gradient, and mineralogical andchemical composition of the parental rocks. Departures fromthe normal sequences are believed to be due to the combinationsof mineralogical variations, availability of H2O, differencesin the ratio µCO2/µH2O, and the rate of reaction.The possible P-T boundaries for diagenesis, the zeolite facies,the lawsonite-albite facies, the prehnite-pumpellyite facies,and the adjacent metamorphic facies are illustrated diagrammatically.  相似文献   

11.
The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite, and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71) with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300 to 850 bars, respectively, during pre-eruption crystallization.  相似文献   

12.
The Gibbs free energies of formation of RuO 2, OsO 2 and IrO 2 have been determined by measuring the chemical potentials of oxygen (μO 2) defined by the reactions M +O 2 = MO 2,whereM =Ru, Os. or Ir, using an electrochemical method with calcia-stabilized zirconia (CSZ) solid electrolytes. Measurements were attempted in the temperature ranges from ∼870 K to 1620, 1270, and 1415 K for the Ru, Os, and Ir equilibria, respectively, but inspection of the results reveals that equilibrium could not be established below ∼930 K for all three reactions. For Ru + RuO 2, the highest temperature data (above 1520 K) may be systematically affected by the onset of significant electronic conduction in the CSZ electrolyte, while the attempted measurements of the Os + OsO 2 equilibrium above 1190 K are obscured by the disproportionation of OsO 2 to gaseous Os oxides.The high temperature heat capacities at constant pressure (Cp) of RuO 2 and IrO 2 were determined from 370 to 1070 K by differential scanning calorimetry. These data were combined with heat content measurements and low-temperature heat capacities from the literature, and fitted to an extended Maier-Kelley equation. The calorimetric data for RuO 2 and IrO 2, together with assessed data for Ru, Os, and Ir metals and estimated data for OsO 2, were used in a third law analysis of the electrochemical measurements.The values of μO 2 of the three equilibria were smoothed and filtered by the third-law analysis to yield the following equations which can be extrapolated to lower and higher temperatures as indicated: μO 2 (Ru + RuO 2) = −324563 + 344.151 T−22.1155 TlnT (700 ⩽ T ⩽ 1800) μO 2 (Os + OsO 2) = −300399 + 307.639 T−17.4819 TlnT (700 ⩽ T ⩽ 1500) μO 2 (Ir + IrO 2) = −256518 + 295.854 T−15.2368 TlnT (700 ⩽ T ⩽ 1500) where μO 2 is in J mol −1, T is in K, the reference pressure for O 2 is 1 bar (10 5 Pa), and estimated accuracies are approximately 200 to 400 J mol −1. For Ru + RuO 2, the drift in the measurements relative to the calorimetric data deduced from the third-law evaluation is 0.7 J K −1 mol −1, and for Ir + IrO 2 is 1.6 J K −1 mol −1. The analogous third-law evaluation of the Os + OsO 2 data gives S° 298K = 54.8 ± 0.7J K −1mol −1 and Δ /tf298K = −291.8 ± 0.6 kJ mol −1 for OsO 2.  相似文献   

13.
Ar, N2 and CO2 were introduced into the structural cavities of channel-evacuated single-crystals of White Well cordierite with the composition: K0.01Na0.03(Mg1.91Fe0.09Mn0.01)Al3.98Si5.01O18. The gas refilling experiments were carried out in conventional hydrothermal bombs at 6–7 kbar and 600–700°C. The increase in the mean refractive indices for gas-treated crystals, as determined with a spindle-stage equipped microscope, was used along with point-dipole calculations to estimate the percentage of occupied structural cavities. The steep increase of the electronic polarizability parallel to the a-axis, which can be derived from the increase of the refractive index n γ (Z∥a) upon introduction of volatiles, indicates that N2 and CO2 are preferentially aligned parallel to the a-axis of cordierite. Single-crystal structure refinements at room temperature confirm these predictions. Additionally, decreased C–O and N–N bond lengths suggest a librational motion with a mean rotary oscillation angle of 35° (N2) and 25° (CO2) about a, where c is the rotation axis. Mean libration angles of 40° (N2) and 28° (CO2) were estimated from the electronic polarizability tensors of CO2 and N2. Site occupancy refinements of the channel position are in good agreement with the optically derived values for the volatile concentrations, both indicating about 70% and 60% filled cavities for Ar- and N2-cordierite, respectively. Chemical analyses and point-dipole calculations confirm that about 45% of the cavities are occupied in the CO2-treated crystal. The structural framework of cordierite is slightly but specifically altered by the various channel occupants.  相似文献   

14.
The National Centre for Compositional Characterisation of Materials (NCCCM) / Bhabha Atomic Research Centre (BARC) and National Aluminium Company Limited (NALCO), India have produced an Indian origin bauxite certified reference material (CRM), referred to as BARC-B1201, certified for major (Al2O3, Fe2O3, SiO2, TiO2, loss on ignition - LOI) and trace contents (V2O5, MnO, Cr2O3, MgO). Characterisation was undertaken by strict adherence to ISO Guides. A method previously developed and validated in our laboratory, using single step bauxite dissolution and subsequent quantitation (of Al2O3, Fe2O3, SiO2, TiO2, V2O5, MnO, Cr2O3 and MgO) by ICP-AES (SSBD ICP-AES) was used for homogeneity studies and an inter-laboratory comparison exercise (ILCE) of the candidate CRM. LOI was determined by thermo-gravimetric analysis. Property values were assigned after an ILCE with participation from seventeen reputed government and private sector laboratories in India. The CRM was certified for nine property values: Al2O3, Fe2O3, SiO2, TiO2, V2O5, MnO, Cr2O3, MgO and LOI, which are traceable to SI units.  相似文献   

15.
The greenschist to amphibolite transition as modeled by the reaction zoisite+tremolite + quartz= anorthite+diopside+water has been experimentally investigated in the chemical system H2O−CaO− MgO−Al2O3−SiO2 over the range of 0.4–0.8 GPa. This reaction is observed to lie within the stability fields of anorthite + water and of zoisite + quartz, in accord with phase equilibrium principles, and its position is in excellent agreement with the boundary calculated from current internally-consistent data bases. The small dP/dT slope of 0.00216 GPa/K (21.6 bars/K) observed for this reaction supports the pressure-dependency of this transition in this chemical system. Experimental reversals of the Al content in tremolitic amphibole coexisting with zoisite, diopside, quartz, and water were obtained at 600, 650, and 700°C and indicated Al total cations (atoms per formula unit, apfu) of only up to 0.5±0.08 at the highest temperature. Thermodynamic analysis of these and previous compositional reversal data for tremolitic amphibole indicated that, of the activity/composition relationships considered, a two-site-coupled cation substitution model yielded the best fit to the data and a S 0 (1 bar, 298 K) of 575.4±1.6 J/K · mol for magnesio-hornblende. The calculated isopleths of constant Al content in the amphibole are relatively temperature sensitive with Al content increasing with increasing temperature and pressure. Finally, several experiments in the range of 1.0–1.3 GPa were conducted to define the onset of melting, and thus the upper-thermal limit, for this mineral assemblage, which must involve an invariant point located at approximately 1.05 GPa and 770°C. Received: 24 January 1997 / Accepted: 2 October 1997  相似文献   

16.
Basaltic glasses included in olivine phenocrysts from Kilauea volcano contain concentrations of H2O, CO2, and S similar to glassy Kilauean basalt dredged from the deep sea floor and greater than vesicular, subaerial Kilauean basalt. Our result contrasts with earlier reports that inclusions of basaltic glass in phenocrysts have little or no H2O and large ratios of CO2H2O. Our analysed inclusions of glass are larger than 100 micrometers thick and similar in chemical composition to the host glass surrounding the olivine crystals indicating that the trapped melts are representative of the bulk liquid from which the crystals grew. Crystallization of about 2–8% of olivine from the melts after they were trapped is indicated by slight departures from the experimentally established equilibrium distribution of Mg and Fe between olivine and liquid. The measured concentrations of CO2 correspond to phenocryst crystallization pressures of about 1.3 kbar for a subaerial basalt and about 5 kbar for a submarine basalt, consistent with geophysical models of Kilauea volcano. The compositions of volcanic gas predicted from our analyses are consistent with restored compositions of actual Kilauean gases. The rate of sulfur emission predicted from our analyses is greater than the sulfur dioxide emission rate observed during repose, but probably consistent with total degassing including eruptive episodes. The concentrations of H2O, K2O, Cl, and P in parental Kilauean basalt can be derived from upper mantle phlogopitic mica, pargasitic amphibole and apatite with compositions close to those of natural primary minerals in ultramafic xenoliths from continental kimberlites, or solely from apatite and phlogopitic mica with H2OK2O near 0.47 ± 0.03, slightly higher than the range of values reported. The amounts of phlogopitic mica and pargasitic amphibole contributing volatiles to Kilauean tholeiite is about 10 percent by mass of the parental liquid, or about 5% if the source does not include amphibole. In view of an estimated 20% of partial melting of mantle source rock to produce Kilauean tholeiites, there may be about 2 weight percent of mica plus amphibole in part of the mantle beneath Kilauea, or about 1 weight percent of phlogopitic mica if amphibole is absent.  相似文献   

17.
An acid assisted microwave-based method for the complete dissolution of bauxite using mixture of H2SO4, H3PO4 and HF acids in a single step was developed for the determination of various analytes (Al2O3, Fe2O3, SiO2, TiO2, Cr2O3, MgO, MnO and V2O5) using ICP-AES. The method was validated with respect to ruggedness, linearity, trueness, precision, limit of detection (LOD), limit of quantification (LOQ), working range and measurement uncertainties by analysing a bauxite reference material (Alcan BXT-12) and four certified reference materials (IPT-131, BXBA-4, NIST SRM 600, NIST SRM 697). The expanded uncertainties obtained for Al2O3 (40.0%), Fe2O3 (17.0%), SiO2 (20.3%), TiO2 (1.31%), Cr2O3 (0.024%), MgO (0.05), MnO (0.013), and V2O5 (0.60%), were 0.80, 0.40, 0.50, 0.033, 0.0008, 0.002, 0.0007 and 0.002 respectively, which are fit for the intended use to characterise bauxite. The developed method was also evaluated through participation in an interlaboratory comparison exercise organised by the Jawaharlal Nehru Aluminium Research Development and Design Centre (JNARDDC), Nagpur, India, using bauxite sample (BXT-JNA), with satisfactory z-scores achieved.  相似文献   

18.
We present a Raman spectroscopic study of the structural modifications of several olivines at high pressures and ambient temperature. At high pressures, the following modifications in the Raman spectra are observed: 1)?in Mn2GeO4, between 6.7 and 8.6?GPa the appearance of weak bands at 560 and 860?cm?1; between 10.6 and 23?GPa, the progressive replacement of the olivine spectrum by the spectrum of a crystalline high pressure phase; upon decompression, the inverse sequence of transformations is observed with some hysteresis in the transformation pressures; this sequence may be interpreted as the progressive transformation of the olivine to a spinelloid where Ge tetrahedra are polymerized, and then to a partially inverse spinel; 2)?in Ca2SiO4, the olivine transforms to larnite between 1.9 and 2.1?GPa; larnite is observed up to the maximum pressure of 24?GPa and it can partially back-transform to olivine during decompression; 3)?in Ca2GeO4, the olivine transforms to a new structure between 6.8 and 8?GPa; the vibrational frequencies of the new phase suggest that the phase transition involves an increase of the Ca coordination number and that Ge tetrahedra are isolated; this high pressure phase is observed up to the maximum pressure of 11?GPa; during decompression, it transforms to a disordered phase below 5?GPa; 4)?in CaMgGeO4, no significant modification of the olivine spectrum is observed up to 15?GPa; between 16 and 26?GPa, broadening of some peaks and the appearance of a weak broad feature at 700–900?cm?1 suggests a progressive amorphization of the structure; near 27?GPa, amorphization is complete and an amorphous phase is quenched down to ambient pressure; this unique behaviour is interpreted as the result of the incompatibilities in the high pressure behaviour of the Ca and Mg sublattices in the olivine structure.  相似文献   

19.
Metal K- and L3-, sulfur K- and arsenic K- and L3-edge X-ray absorption near-edge spectra of a series of metal disulfides, FeS2 (both pyrite and marcasite), CoS2, NiS2, and CuS2, and their isomorphs, FeAsS and CoAsS, are presented. The features in this region of these spectra are interpreted using band structure and molecular orbital calculations in terms of the transitions from the 1s or 2p3/2 state to unoccupied states. The 3d transition metal L3-edge spectra of these materials show dependence on the degree of multiplet splitting in the final state, and thus offer less information on the electronic ground state. There are substantial differences in the spectra of the isostructural materials, whereas the spectra of the isotopes pyrite and marcasite show several similarities, illustrating the dependence of near-edge region on electronic structure.  相似文献   

20.
Gas adsorption isotherms of Akabira coals were established for pure carbon dioxide (CO2), methane (CH4), and nitrogen (N2). Experimental data fit well into the Langmuir model. The ratio of sorption capacity of CO2, CH4, and N2 is 8.5:3.5:1 at a lower pressure (1.2 MPa) regime and becomes 5.5:2:1 when gas pressure increases to 6.0 MPa. The difference in sorption capacity of these three gases is explained by differences in the density of the three gases with increasing pressure. A coal–methane system partially saturated with CH4 at 2.4 MPa adsorption pressure was experimentally studied. Desorption behavior of CH4 by injecting pure CO2 (at 3.0, 4.0, 5.0, and 6.0 MPa), and by injecting the CO2–N2 mixture and pure N2 (at 3.0 and 6.0 MPa) were evaluated. Results indicate that the preferential sorption property of coal for CO2 is significantly higher than that for CH4 or N2. CO2 injection can displace almost all of the CH4 adsorbed on coal. When modeling the CH4–CO2 binary and CH2–CO2–N2 ternary adsorption system by using the extended Langmuir (EL) equation, the EL model always over-predicted the sorbed CO2 value with a lower error, while under-predicting the sorbed CH4 with a higher error. A part of CO2 may dissolve into the solid organic structure of coal, besides its competitive adsorption with other gases. According to this explanation, the EL coefficients of CO2 in EL equation were revised. The revised EL model proved to be very accurate in predicting sorbed ratio of multi-component gases on coals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号