首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
朱强  胡召齐  施珂  吴礼彬  江来利 《地质通报》2018,37(6):1101-1112
用LA-ICP-MS测得安徽滁州2个闪长玢岩样品中锆石~(206)Pb/~(238)U年龄为126.19±0.44Ma和126.4±0.7Ma,结合前人研究,得出滁州地区岩体的侵位时代应为120~130Ma之间,为早白垩世。岩石地球化学研究显示,Si O_2含量变化范围为56.75%~60.90%,具有高Al_2O_3(14.82%~15.77%)、Mg O(4%)、Sr(750×10~(-6))、Sr/Y(62~110)、La/Yb(20~36),低Y、Yb的特征,同时富集轻稀土元素和大离子亲石元素,亏损高场强元素,Eu异常不明显,属于典型的埃达克质岩。Mg~#值为39~45,K_2O/Na_2O值为0.57~0.96,平均值为0.75,明显低于大别造山带加厚下地壳埃达克岩,Ce/Pb值较低,大多集中在3~5之间,类似于陆壳而明显低于洋壳。研究认为,安徽滁州地区埃达克质岩由拆沉下地壳部分熔融形成,埃达克质岩浆在上升过程中与地幔橄榄岩发生反应,导致熔体Mg O、Cr、Ni等含量增加。早白垩世中国东部地壳伸展减薄导致下地壳拆沉,地幔物质的参与带来铜、金等成矿物质,埃达克质岩可作为该地区重要的找矿标志。  相似文献   

2.
The Urumieh-Dokhtar magmatic arc (UDMA) of Central Iran has been formed during Neotethyan Ocean subduction underneath Eurasia. The Rabor-Lalehzar magmatic complex (RLMC), covers an area ~1000?km2 in the Kerman magmatic belt (KMB), SE of UDMA. RLMC magmatic rocks include both granitoids and volcanic rocks with calc-alkaline and adakitic signatures but with different ages.Miocene adakitic rocks are characterd by relatively enrichmented in incompatible elements, high (Sr/Y)(N) (>40), and (La/Yb)(N) (>10) ratios with slightly negative Eu anomalies (EuN/Eu*≈ 0.9), depletion in HFSEs, and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7048–0.7049). In contrast, the Oligocene granitoids exhibit low Sr/Y (<20) and La/Yb (<9) ratios, negative Eu anomalies (EuN/Eu*?≈?0.5), and enrichment in HFSEs and radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7050–0.7052), showing affinity to the island arc rocks. Eocene volcanic rocks which crusscut the younger granitoid rocks comprise andesites and dacites. Geochemically, lavas show calc-alkaline character without any Eu anomaly (EuN/Eu*?≈?1.0). Based on the geochemical and isotopic data we propose that melt source for both calc-alkaline and adakitic rocks from the RLMC can be related to the melting of a sub-continental lithospheric mantle (SCLM). Basaltic melts derived from a metasomatized mantle wedge might be emplaced at the mantle-crust boundary and formed the juvenile mafic lower crust. However, some melts fractionated in the shallow magma chambers and continued to rise forming the volcanic intermediate-mafic rocks at the surface. On the other hand, the assimilation and fractional crystallization in the shallow magma chambers of may have been responsible for the development of Oligocene granitoids with calc-alkaline affinity. In the mid-Late Miocene, following the collision between Afro-Arabia and Iranian block the juvenile mafic crust of UDMA underwent thickening and metamorphosed into garnet-amphibolites. Subsequent upwelling of a hot asthenosphere during Miocene was responsible for partial melting of thickened juvenile crust of the SE UDMA (RLM complex). The adakitic melts ascended to the shallow crust to form the adakitic rocks in the KMB.  相似文献   

3.
The Dehsalm Cu–Mo-bearing porphyritic granitoids belong to the Lut Block volcanic–plutonic belt (central eastern Iran). These rocks range in composition from gabbro-diorite to granite, with dominance of monzonites and quartz monzonites, and have geochemical features of high-K calc-alkaline to shoshonitic volcanic arc suites. Primitive mantle-normalized trace element spider diagrams display strong enrichment in large-ion lithophile elements such as Rb, Ba and Cs and depletions in some high-field strength elements, e.g., Nb, Ti, Y and HREE. Chondrite-normalized plots display significant LREE enrichments, high LaN/YbN and a lack of Eu anomaly. High Sr/Y and La/Yb ratios of Dehsalm intrusives reveal that, despite their K-rich composition, these granitoids show some resemblances with adakitic rocks. A Rb–Sr whole rock–feldspar–biotite age of 33 ± 1 Ma was obtained in a quartz monzonite sample and coincides, within error, with a previous geochronological result in Chah-Shaljami granitoids, further northwest within the Lut Block. (87Sr/86Sr)i and εNdi isotopic ratios range from 0.70481 to 0.70508 and from +1.5 to +2.5, respectively, which fits into a supra-subduction mantle wedge source for the parental melts and indicates that crustal contribution for magma diversification was of limited importance. Sr and Nd isotopic compositions together with major and trace element geochemistry point to an origin of the parental magmas by melting of a metasomatized mantle source, with phlogopite breakdown playing a significant role in the geochemical fingerprints of the parental magmas; small amounts of residual garnet in the mantle source also help to explain some trace element patterns. Geochemical features of Dehsalm porphyries and its association with Cu–Mo mineralization agree with a mature continental arc setting related to the convergence of Afghan and Lut plates during Oligocene.  相似文献   

4.
The Jigongshan and Qijianfeng batholiths in the Tongbai orogen consist mainly of porphyritic hornblende-biotite monzogranite, biotite monzogranite, and biotite syenogranite, which are variably intruded by lamprophyre, diorite, and syenogranite dykes. Mafic microgranular enclaves commonly occur in the hornblende-biotite monzogranite, whereas surmicaceous enclaves are found in the biotite monzogranite. Both batholiths have zircon U–Pb ages ranging from ca. 139 to 120 Ma, indicating their emplacement in the Early Cretaceous. The hornblende-biotite monzogranite has an adakitic affinity marked by relatively high Sr/Y and (La/Yb) N ratios, lack of Eu anomalies, low MgO and Ni contents, and Na2O > K2O. Its chemical compositions, combined with enriched Sr–Nd isotopic signatures, suggest formation by dehydration melting of mafic rocks in a thickened lower crust. This thickened crust resulted from the Permo-Triassic subduction-collision between the North China and South China blocks and persisted until the Early Cretaceous. The biotite monzogranite and biotite syenogranite have low Al2O3, CaO, and Sr contents, low Rb/Sr, FeOt/MgO, and (Na2O + K2O)/CaO ratios, and flat HREE patterns with moderate to weak Eu anomalies. They were produced by partial melting of crustal materials under relatively low pressure. Partial melting at different crustal levels could have significantly contributed to mechanical weakening of the crust. The diorite and lamprophyre dykes show linear trends between SiO2 and major or trace elements on Harker diagrams, with two lamprophyre samples containing normative nepheline and olivine. These rocks have high La/Yb and Dy/Yb ratios, both displaying co-variation with contents of Yb. They were originated from relatively deep lithospheric mantle followed by fractionation of olivine + clinopyroxene + apatite + Fe–Ti oxides. Extensive partial melting in the lithospheric mantle indicates relatively high temperatures at this level. We suggest that the presence of adakitic magmas, thickened but weakened crust and high temperatures in the lithosphere mantle point to lower crustal delamination in the Early Cretaceous in the Tongbai orogen.  相似文献   

5.
We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture. Compared to classic ‘adakites’ that form along certain active convergent plate margins, the Tibetan adakitic rocks show even stronger enrichment in incompatible elements (i.e. Rb, Ba, Th, K and LREEs) and even larger variation in radiogenic (Pb, Sr, Nd) isotope ratios. Tibetan adakitic rocks have extraordinarily low HREE (Yb: 0.34–0.61 ppm) and Y (3.71–6.79 ppm), high Sr/Y (66–196), high Dyn/Ybn and Lan/Ybn. They show strong evidence of binary mixing both in isotopic space (Sr-Nd, common Pb, thorogenic Pb) and trace element systematics. The majority of the adakitic rocks in south Tibet, including published and our new data, have variational Mg# (0.32–0.70), clear Nb (and HFSE) enrichment, the lowest initial 87Sr/86Sr and 206Pb/204Pb ratios, and the highest 144Nd/143Nd ratios of all Neogene volcanic rocks in south Tibet. These results indicate an involvement of slab melts in petrogenesis. Major and trace element characteristics of the isotopically more enriched adakites are compatible with derivation from subducted sediment but not with assimilation of crustal material. Thus, the south Tibetan adakitic magmas are inferred to have been derived from an upper mantle source metasomatised by slab-derived melts. An interesting observation is that temporally coeval and spatially related lamproites could be genetically related to the adakitic rocks in representing partial melts of distinct mantle domains metasomatised by subducted sediment. Our favoured geodynamic interpretation is that along-strike variation in south Tibetan post-collisional magma compositions may be related to release of slab melts and fluids along the former subduction zone resulting in compositionally distinct mantle domains.  相似文献   

6.
To date, few adakitic rocks have been reported in direct association with contemporary intra-continental extensional structures, which has cast doubt on genetic models involving partial melting of the lower crust. This study presents Early Cretaceous (143-129 Ma, new Sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages) adakitic granites, which are directly associated with a contemporary metamorphic core complex (i.e., the Northern Dabie Complex in the Dabie area). These granites exhibit relatively high Sr contents, negligible to positive Eu and Sr anomalies, high La/Yb and Sr/Y ratios, but very low Yb and Y contents, similar to subducted oceanic crust-derived adakites. They are also characterized, however, by very low MgO or Mg# and Ni values, and Nd-Sr isotope compositions (εNd(t) = −14.6 to −19.4 and (87Sr/86Sr)i = 0.7067-0.7087) similar to Triassic continent-derived eclogites subducted in the Dabie-Sulu Orogen. Additionally, late granitic dikes in the adakitic intrusions exhibit low Sr contents, clearly negative Eu and Sr anomalies, low La/Yb and Sr/Y ratios, but relatively high Yb and Y contents, similar to 118-105 Ma granites in the Northern Dabie Complex. Based on composition and geochronology data of Neoproterozoic amphibolites and orthogneisses, Triassic high- to ultra-high pressure metamorphic rocks, and Early Cretaceous mafic-ultramafic intrusive rocks, and the constraints provided by experimental melt data for tonalites, metabasaltic rocks and eclogites, we suggest that the adakitic granites were most probably generated by partial melting of thickened amphibole or rutile-bearing eclogitic lower crust as a consequence of Triassic-Middle Jurassic subduction and thrusting. The late dikes probably originated from plagioclase-bearing intermediate granulites. Moreover, we suggest that late Mesozoic delamination or foundering of thickened eclogitic lower crust is also a more plausible mechanism for the petrogenesis of Early Cretaceous mafic-ultramafic intrusive rocks in the Dabie area, and probably involved partial melting of a mixed source comprising eclogitic lower crust that had delaminated or foundered into upper lithospheric or asthenospheric mantle peridotite. Asthenospheric upwelling in response to post-collisional delamination of lithospheric mantle was likely to have provided the heat source for the Cretaceous magmatism.  相似文献   

7.
Volcanic rocks in the study area, including dacite, trachyandesite and mugearite, belong to the intermediate-acid, high-K calc-alkaline series, and possess the characteristics of adakite. The geochemistry of the rocks shows that the rocks are characterized by SiO2>59%, enrichment in A12O3(15.09-15.64%) and Na2O (>3.6%), high Sr (649-885 μg/g) and Sc, low Y contents (<17 μg/g), depletion in HREE (Yb<1.22 μg/g), (La/Yb)N>25, Sr/Y>40, MgO<3% (Mg<0.35), weak Eu anomaly (Eu/Eu=0.84-0.94), and lack of the high field strength elements (HFSE) (Nb, Ta, Ti, etc.). The Nd and Sr isotope data (87Sr/86Sr=0.7062-0.7079, 143Nd/144Nd=0.51166-0.51253, εNd= -18.61-0.02), show that the magma resulted from partial melting (10%-40%) of newly underplated basaltic lower crust under high pressure (1-4 GPa), and the petrogenesis is obviously affected by the crust's assimilation and fractional crystallization (AFC). This research will give an insight into the uplift mechanism of the Tibetan plateau.  相似文献   

8.
<正>The Longgouhe and Ershiyizhan intrusions of the Late Jurassic,located in the Upper Heilongjiang Basin of the northern Great Hinggan Range,are closely related to porphyry Cu-Au mineralizations.In lithology the intrusions are quartz diorite,quartz monzodiorite and granodiorite of high-K calc-alkaline series,with minor aspects of shoshonite series.Their SiO_2 and Al_2O_3 contents range from 61.37%to 66.59%and 15.35%to 17.06%,respectively.The MgO content ranges from 2.02%to 3.47%,with Mg~# indices of 44-59.The(La/Yb)_N and Eu/Eu~* values range from 16.85 to 81.73 and 0.68 to 0.93,respectively,showing strong differentiation rare earth element(REE) patterns similar to those of adakites.The rocks are enriched in Ba,Sr and light REE(LREE),obviously depleted in Nb and Ta,slightly depleted in Rb and Ti,and poor in Yb and Y,with Yb and Y contents of 0.31-1.32 ppm and 4.32-12.07 ppm,respectively.As indicated by Sr/Y ratios of 67.74-220.60,the rocks are characterized by low-Y and high-Sr contents,which characterize the adakites in the world.Holistically, geochemical tracers suggest that the interested intrusions are adakitic rocks.Given that the Paleo-Asian Ocean and Mongol-Okhotsk Ocean were closed in the Late Paleozoic and Permian-Middle Jurassic,respectively,the interested intrusions should be formed by partial melting of delaminated crust,which had been thickened during collisional orogeny between the Siberian and Mongolian-Sinokorean continents.  相似文献   

9.
ABSTRACT

The Anqing region in Lower Yangtze River metallogenic belt is one of the important Cu polymetal producers in China. The origin of Cu polymetallic deposits in the region is closely related to Early Cretaceous adakitic intrusions. To constrain the petrogenetic and metallogenic significance of the adakitic rocks, a detailed geochronological, geochemical, and Sr–Nd–Pb–Hf isotopic study was performed. The Anqing adakitic rocks (SiO2 = 57.4–64.2 wt.%) consist mainly of quartz monzodiorite, formed at 138.2 ± 1.7 Ma (Mean Standard Weighted Deviation (MSWD) = 0.61). They have high MgO, Al2O3, Sr, and low Rb, Y, Yb contents, together with high Sr/Y (50.5–222) and La/Yb (31.9–46.9) ratios. They also show negative whole-rock εNd(t) (?9.8 to ?8.5) and zircon εHf(t) (?10.0 to ?5.4), and high oxygen fugacity (mainly ?17.0 to ?8.01) values and radiogenic Pb isotopic compositions with (206Pb/204Pb)i = 17.692–17.884, (207Pb/204Pb)i = 15.413–15.511, and (208Pb/204Pb)i = 37.611–37.943. Coupled with negative Nb–Ta anomalies, low K2O/Na2O ratios (0.39–0.62), and high Mg# values (0.44–0.71), these data suggest the adakitic rocks and associated large-scale Cu–Au mineralization of the Anqing region resulted from partial melting of the high oxidized subducted oceanic crust. Addition of mantle-derived magmas and assimilation of crustal materials during emplacement are also possible.  相似文献   

10.
A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686–930 ppm) and HREE contents, low Y(11.9–19.8 ppm) and Yb(1.08–1.52 ppm) contents, and they therefore have high Sr/Y(42–63) and La/Yb(24–36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K_2O/Na_2O ratios(0.57–0.81), low Mg O contents(0.77–3.06 wt%), low Mg# value(17–49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.  相似文献   

11.
High-K calc-alkaline magmas from the Cenozoic Qiangtang volcanic field, northern Tibetan Plateau, contain lower crustal two-pyroxene and clinopyroxene granulite xenoliths. The petrology and geochemistry of six mafic and three felsic xenoliths from the Hol Xil area south of Ulan Ul Lake are discussed. Mafic granulites (Pl, Opx, Cpx, Ksp, and Bt) contain 48.76–58.61% SiO2, 18.34–24.50% Al2O3, 3.16–5.41% Na2O, 1.58–3.01% K2O, low Mg# (30–67), LREE and LILE enrichment, high Rb/Sr (0.09–0.21), (La/Yb)N (17.32–49.35), low Nb/Ta (9.76–14.92), and variable Eu anomalies (Eu?=?0.19?0.89). They also have more evolved Sr-Nd-Pb isotopic compositions in comparison with the host dacites 87Sr/86Sr (0.710812 vs. 0.713241), ?Sr (+169.13 vs.?+203.88), 143Nd/144Nd (0.512113 vs. 0.512397), ?Nd (?4.70 to??10.05), 206Pb/204Pb (18.7000 vs. 18.9565), 207Pb/204Pb (15.7135 vs. 15.7662), and 208Pb/204Pb (39.1090 vs. 39.4733). Felsic granulites (Qtz, Pl, Ksp, Bt, and Cpx) show enrichment of LREE and LILE and have evolved Sr-Nd-Pb isotopic compositions with (La/Yb)N (2.04–10.82), 87Sr/86Sr (0.712041–0.729088), ?Sr (+180.71–+430.59), 143Nd/144Nd (0.512230–0.512388); ?Nd (?4.74 to??7.96), 206Pb/204Pb (18.9250–19.1717), 207Pb/204Pb (15.7662–15.7720), and 208Pb/204Pb (39.2109–39.6467). These geochemical data suggest that the protolith of the mafic granulites could have been a hybrid mafic magma (e.g. enriched mantle type II) or metasomatized restite derived from the partial melting of metamafic-intermediate rocks rather than basaltic cumulates, whereas the felsic granulite protolith was a quartzofeldspathic S-type granitic rock. We argue that the lower crust of the northern Tibetan Plateau is hot and heterogeneous rather than wholly gabbroic. Interaction between the mantle-derived magma and the metasedimentary/granitic lower crust of the Tibetan Plateau may have played an important role in the generation of shoshonitic and high-K calc-alkaline andesite-dacite rocks.  相似文献   

12.
新疆东天山白山钼矿深部岩体地球化学特征及成因意义   总被引:2,自引:2,他引:0  
白山钼矿深部钻探表明矿体下部存在着矿化花岗斑岩体,所获岩芯显示其岩性主要为似斑状钾长花岗岩、黑云母斜长花岗岩和花岗斑岩.该岩体具有高Al、Na和Sr,低Mg、Y和Yb,以及高Sr/Y和La/Yb比值等特点,类似于埃达克质岩的地球化学特征,暗示来源于较深的含石榴子石的源区;岩石形成时代和地球化学构造判别图解表明,岩体形成于造山后的构造环境.因此,白山钼矿岩体可能为加厚下地壳熔融的产物.白山钼矿床的成矿作用可能与埃达克质岩浆活动有关,其成矿过程得益于高Mo丰度的地壳源区、成岩过程中提供流体和岩浆高氧逸度环境等.  相似文献   

13.
Adakitic rocks and related Cu–Au mineralization are widespread along eastern Jiangnan Orogen in South China. Previous studies have mainly concentrated on those in the Dexing area in northeastern Jiangxi Province, but information is lacking on the genesis and setting of those in northwestern Zhejiang Province. The Jiande copper deposit is located in the suture zone between the Yangtze and Cathaysia blocks of South China. This paper presents systematic LA–ICP–MS zircon U–Pb dating and element and Sr–Nd–Hf isotopic data of the Jiande granodiorite porphyry. Zircon dating showed that the Jiande granodiorite porphyry was produced during the Middle Jurassic (ca. 161 Ma). The Jiande granodiorite porphyry is characterized by adakitic geochemical affinities with high Sr/Y and LaN/YbN ratios but low Y and Yb contents. The absence of a negative Eu anomaly, extreme depletion in Y and Yb, relatively low MgO contents, and relatively high 207Pb/204Pb ratios, indicated that the Jiande granodiorite porphyry was likely derived from partial melting of the thickened lower continental crust. In addition, the Jiande granodiorite porphyry shows arc magma geochemical features (e.g., Nb, Ta and Ti depletion), with bulk Earth‐like εNd (t) values (?2.89 to ?1.92), εHf (t) values (?0.6 to +2.8), and initial 87Sr/86Sr (0.7078 to 0.7105). However, a non‐arc setting in the Middle Jurassic is indicated by the absence of arc rocks and the presence of rifting‐related igneous rock associations in the interior of South China. Combined with the regional Neoproterozoic Jiangnan Orogeny, it indicates that these arc magma geochemical features are possibly inherited from the Neoproterozoic juvenile continental crust formed by the ancient oceanic crust subduction along the Jiangnan Orogen. The geodynamic environment that is responsible for the development of the Middle Jurassic Jiande granodiorite porphyry is likely a localized intra‐continental extensional environment along the NE‐trending Jiangshan‐Shaoxing Deep Fault as a tectonic response to far‐field stress at the margins of the rigid South China Plate during the early stage of the paleo‐Pacific plate subduction. In terms of Cu mineralization, we suggest that the metal Cu was released from the subducted oceanic slab and reserved in the juvenile crust during Neoproterozoic subduction along the eastern Jiangnan Orogen region. Partial melting of the Cu rich Neoproterozoic juvenile crust during the Middle Jurassic time in the Jiande area caused the formation of adakitic rocks and the Cu deposit.  相似文献   

14.
The granitoids and related polymetallic mineralization in the Zhejiang Province at the southeast margin of the Yangtze Block in China provide an important window to evaluate metallogeny associated with convergent margin magmatism. Here, we present geochronological, geochemical, and isotopic data from the granitic rocks of west Zhejiang, to constrain the timing of transformation of the tectonic setting of this region from volcanic arc to intra-plate during Late Mesozoic and its bearing on regional metallogeny. The granitic rocks in west Zhejiang can be geochemically subdivided into two groups. The first group is characterized by relatively steep rare earth element (REE) patterns with slight Eu anomalies, high Sr, low Yb, and negative Nb–Ta–Ti (NTT) anomalies, indicating a volcanic arc environment with a thickened crust in a convergent setting. The second group is featured by flat REE patterns with prominent negative Eu anomalies, low Sr, high Yb, and weak NTT anomalies, suggesting an intra-plate extensional environment with a thin crust. The geochronology of granitic rocks in west Zhejiang, combined with ages of regional tectonic basins and nappe structures, constrains the timing of the tectonic transformation to be in the range from 150 to 140 Ma. Sr–Nd isotopic data and a positive correlation displayed by oxygen fugacity (fO2), and La/Sm and Ba/Th ratios (proxies of subducted sediments and slab dehydration fluids) suggest that the high oxygen fugacity is probably related to the melting of subducted sediments and slab dehydration. From 180 to 80 Ma, due to the increasing dip angle of the subducted Izanagi Plate, the volcanic arc belt migrated oceanward, leaving most of the interior of Zhejiang Province under an intra-plate environment where insufficient subducted components and upwelling mantle generated reduced magmas which were not favorable for Cu–Mo mineralization. Our model provides a plausible explanation for the absence of Cu–Mo porphyry deposits in the adjacent region of Zhejiang, Jiangxi, and Anhui provinces (Zhe-Gan-Wan region) after 140 Ma.  相似文献   

15.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

16.
查布复式花岗质岩体位于冈底斯岩浆岩带中段,出露面积约400 km2。文章报道了该岩体浅成相黑云母二长花岗斑岩和次火山岩相英安斑岩的锆石U-Pb年龄、元素地球化学和Sr-Nd-Hf同位素组成,据此探讨了岩石的成因及其所蕴含的地质意义。锆石LA-ICP-MS U-Pb定年结果表明,它们的成岩年龄为13~16 Ma,属中新世时期岩浆活动的产物。地球化学组成上,这套岩石为高钾钙碱性、准铝质—弱过铝质,富集轻稀土和Rb、Th、U等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,Cr、Ni的含量低,缺乏显著铕负异常,并具有高Sr和低Y、Yb含量,以及高的Sr/Y及(La/Yb)N比值,可归之为埃达克质岩石。它们的(87Sr/86Sr)i 比值偏高(=0.706347~0.707584),εNd(t)值明显偏低(=-4.15~-7.33),并具有散布于负值到正值之间的锆石εHf(t)值(=-5.99~7.78)。综合分析表明,中新世时期印度陆壳已俯冲至拉萨地块之下,查布埃达克质岩形成于后碰撞的伸展背景,应为增厚的初生镁铁质下地壳部分熔融岩浆与深俯冲而进入拉萨地块之下的印度古老地壳组分经混合作用的产物。  相似文献   

17.
The Balkuyumcu region, located in the southwestern part of Ankara in the Izmir-Ankara suture zone (central Anatolia, Turkey), consists of basic andesitic, andesitic, dacitic and rhyolitic rocks extruded during the Early Miocene (20–22 Ma) as a result of post-collisional volcanism. Balkuyumcu volcanic rocks can be divided into two groups on the basis of their mineralogy and composition: The basic andesitic (BA) and andesitic, dacitic and rhyolitic (ADR) groups. The ADR and BA group of rocks have adakite-like and calc-alkaline characteristics, respectively. The ADR group has higher SiO2 content, Sr/Y and La/Yb ratios and low MgO, Mg#, Y and Yb contents than the BA group. Both groups have nearly the same Sr, Nd isotopic compositions and display similar normalized multi-element patterns with enrichments in LILE and LREE, depletions in Nb, Ti, Zr, P and a lack of Eu anomalies. Major, trace element and Sr, Nd isotopic data indicate that both groups of rocks were derived from the same source but affected by different magmatic processes during ascent. The adakite-like rocks may have been produced by partial melting of thickened lower continental crust. Fractional crystallization also played a major role in their formation. However, the BA group rocks were derived from partial melting of lower continental crust that was probably delaminated. These rocks appear to have had limited interaction with mantle peridodite during ascent to the surface.  相似文献   

18.
<正>The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source and peterogenesis are still debated.~(40)Ar-~(39)Ar and LAM-ICPMS zircon U-Pb isotopic dating confirm that these rocks erupted in Eocene.In addition,the Nadingcuo volcanic rocks are characterized by high Sr/Y content ratios,similar with the adakite derived from partial melting of oceanic crust.They can be further classified as high Mg~#(Mg~#=48-57) and low Mg~# (Mg~#=33-42) subtypes.The Nadingcuo adakitic rocks have relatively low(~(87)Sr/~(86)Sr)_i and highε_(Nd)(t), showing a trend of similarity to the Dongcuo ophiolite present in the Bangong-Nujiang oceanic crust. Simple modeling indicates that the Nadingcuo adakitic rocks are a mix resulting from the basalt of Bangong-Nujiang Ocean with 10%-20%crustal material of Lhasa terrane.On these bases we suggest that the low Mg~# Nadingcuo adakitic rocks are the product of partial melting of remnant oceanic crust with small sediment,and the high Mg~# rocks are the result of reaction between rising melt of remnant oceanic crust with subducted sediment and mantle wedge.Therefore,the origin of Nadingcuo adakitic rocks may be related to intracontinental subduction triggered by collision of India-Asia during Cenozoic.  相似文献   

19.
The Dexing adakitic porphyries (quartz diorite–granodioriteporphyries), associated with giant porphyry Cu deposits, arelocated in the interior of a continent (South China). They exhibitrelatively high MgO, Cr, Ni and Sr contents, high La/Yb andSr/Y ratios, but low Yb and Y contents, similar to adakitesproduced by slab melting associated with subduction. However,they are characterized by bulk Earth-like Nd–Sr isotopecompositions (Nd(t) = –1·14 to +1·80 and(87Sr/86Sr)i = 0·7044 – 0·7047), and highTh (12·6–27·2 ppm) contents and Th/Ce (0·19–0·94)ratios, which are different from those of Cenozoic slab-derivedadakites. Sensitive High-Resolution Ion Microprobe (SHRIMP)geochronology studies of zircons reveal that the Dexing adakiticporphyries have a crystallization age of 171 ± 3 Ma.This age is contemporaneous with Middle Jurassic extension withinthe Shi-Han rift zone, and within-plate magmatism elsewherein South China, indicating that the Dexing adakitic porphyrieswere probably formed in an extensional tectonic regime in theinterior of the continent rather than in an arc setting. Theirhigh Th contents and Th/Ce ratios, and Middle Jurassic age,argue against an origin from a Neoproterozoic (1000 Ma) stalledslab in the mantle. Taking into account available data for theregional metamorphic–magmatic rocks, and the present-daycrustal thickness (31 km) in the area, we suggest that the Dexingadakitic porphyries were most probably generated by partialmelting of delaminated lower crust, which was possibly triggeredby upwelling of the asthenospheric mantle due to the activityof the Shi-Hang rift zone. Moreover, the Dexing adakitic magmasmust have interacted with the surrounding mantle peridotiteduring their ascent, which elevated not only their MgO, Cr andNi contents, but also the oxygen fugacity (fO2) of the mantle.The high fO2 could have induced oxidation of metallic sulfidesin the mantle and mobilization of chalcophile elements, whichare required to produce associated Cu mineralization. Therefore,the Cu metallogenesis associated with the Dexing adakitic porphyriesis probably related to partial melting of delaminated lowercrust, similar to the metallogenesis accompanying slab melting. KEY WORDS: adakite; lower crust; delamination; porphyry copper deposit, South China  相似文献   

20.
埃达克质岩的金属成矿作用   总被引:12,自引:0,他引:12  
介绍了“埃达克质岩”的术语、与成矿有关的埃达克质岩的分布、成矿背景,讨论了埃达克质岩有利于成矿的控制因素。“埃达克质岩”是指那些具有与俯冲洋壳熔融形成的“埃达克岩”类似地球化学特征,如SiO2≥56%,Al2O3≥15%,亏损Y(≤18×10-6)和重稀土元素(如Yb≤1.9×10-6),高Sr(很少样品的Sr含量低于400×10-6),无-正Eu,Sr异常,贫高场强元素等,但可以形成于不同构造背景并可有不同成因的岩浆岩。埃达克质岩具有重要的金属成矿意义,其有利成矿背景主要包括岛弧、大陆板内伸展和大陆活动碰撞造山带环境。世界上许多(包括三个最大的)斑岩铜矿都与埃达克质斑岩密切共生,因此埃达克质岩的成矿潜力巨大。在岛弧和大陆板内伸展环境中,来自俯冲玄武质洋壳或洋壳沉积物或拆沉的大陆地壳产生的熔体或释放的超临界流体与地幔的相互作用,一方面可能导致熔体被地幔橄榄岩混染,另一方面可能导致高Fe2O3含量的熔体或超临界流体对地幔的交代作用,地幔氧逸度升高,地幔金属硫化物被氧化分解,有利于铜、金等的矿化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号