首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Daily and annual integrated rates of primary productivity and community respiration were calculated using physiological parameters measured in oxygen-based photosynthesis-irradiance (P-I) incubations at 8 stations throughout central and western Long Island Sound (cwLIS) during the summer and autumn of 2002 and 2003 and the late spring of 2003. Each calculation takes into account actual variations in incident irradiance over the day and underwater irradiance and standing stock with depth. Annual peak rates, ±95% confidence interval of propagated uncertainty in each measurement, of gross primary production (GPP, 1,730±610 mmol O2 m−2 d−1), community respiration (Rc, 1,660±270 mmol O2 m−2 d−1), and net community production (NCP, 1,160±1,100 mmol O2 m−2 d−1) occurred during summer at the western end of the Sound. Lowest rates of GPP (4±11 mmol O2 m−2 d−1), Rc (−50±300 mmol O2 m−2 d−1), and NCP (−1,250±270 mmol O2 m−2 d−1) occurred during late autumn-early winter at the outer sampled stations. These large ranges in rates of GPP, Rc, and NCP throughout the photic zone of cwLIS are attributed to seasonal and spatial variability. Algal respiration (Ra) was estimated to consume an average of 5% to 52% of GPP, using a literature-based ratio of Ra:Rc. From this range, we established that the estimated Ra accounts for approximately half of GPP, and was used to estimate daily net primary production (NPP), which ranged from 2 to 870 mmol O2 m−2 d−1 throughout cwLIS during the study. Annual NPP averaged 40±8 mol O2 m−2 yr−1 for all sampled stations, which more than doubled along the main axis of the Sound, from 32±14 mol O2 m−2 yr−1 at an eastern station to 82±25 mol O2 m−2 yr−1 at the western-most station. These spatial gradients in productivity parallel nitrogen loads along the main axis of the Sound. Daily integrals of productivity were used to test and formulate a simple, robust biomass-light model for the prediction of phytoplankton production in Long Island Sound, and the slope of the relationship was consistent with reports for other systems.  相似文献   

2.
Current meter data were acquired in Long Island Sound over a period of about 6 mo in 1988 at six different transects. The averages of the low-passed residuals represent the contributions from tidal steering and density forcing. It is found that the long-term residual circulation starts out with a classical estuarine pattern at the Race. The flows into and out of the Sound are vertically partitioned by Long Sand Shoal; they gradually revert back to classical vertically layered estuarine circulation as the Central Basin is traversed. Further west, the bottom oceanic water becomes a westward flowing swift jet close to the Connecticut shore, while the East River water is constrained to flow eastward along the Long Island coast. Counterclockwise gyres, identified in the Eastern Narrows and Western Basin, may increase residence times of polluted East River water in the western Long Island Sound.  相似文献   

3.
Trace metals and organic contaminants concentrations are monitored annually in surface sediments, blue mussel tissue, and winter flounder livers at multiple sites in Long Island Sound by National Oceanic and Atmospheric Administration’s National Status and Trends (NS&T) program for Marine Environmental Quality. The NS&T program is also conducting various studies on the bioeffects of contaminants in the sound. Three years of monitoring results indicate organic and elemental contaminants concentrations in sediments and biota at sites in the western portion of the sound are high on a national scale. Possible decreasing trends in cadmium and chlordane in the sound are suggested by the 1986–1988 data for their concentrations in mussels. A comparison between NS&T Mussel Watch results and those of the Environmental Protection Agency’s Mussel Watch, conducted from 1976 through 1978, indicated a decadal increase in copper concentrations and a decrease in lead in the sound. Bioeffects studies in the sound have revealed responses to contamination only in localized zones where contaminant levels are very high.  相似文献   

4.
5.
Acanthohaustorius bousfieldi n. sp. andA. similis n. sp. (Amphipoda: Haustoriidae) are described from the offshore bottom sands of the New York Bight and Long Island Sound regions.  相似文献   

6.
Sea level variability in Long Island Sound is examined at both tidal and subtidal frequencies over a 1-yr period. The sound is found to be decoupled effectively from the lower Hudson Estuary at tidal frequencies. The predominantly semidiurnal tides in the sound are forced by the oceanic tides transmitted from the mouth. There is a near fourfold amplification of the semi-diurnal tides within the sound due to resonance. Diurnal tides are much weaker in the sound, and there is also no evidence of significant amplification in the interior. At subtidal frequencies, the pressure-adjusted sea level in the interior of the sound is forced by a combination of co-oscillation with coastal sea level at the mouth and direct setup induced by local wind forcing over the surface of the sound. Because the longitudinal axis of Long Island Sound is roughly aligned with the open coast from Montauk Point to Sandy Hook, these two mechanisms work in concert to produce larger subtidal sea level fluctuations in the western sound relative to those in the eastern sound. A linearized, frequency-dependent analytical model is developed to aid the interpretation of field observations.  相似文献   

7.
Monthly measurements of suspended sediment concentration and salinity were made at 29 stations along the axis of Long Island Sound from August 1987 through February 1988. The measurements were combined in a 29-segment, two-layer box model to calculate the total sediment fluxes and accumulation rates. Estimates of the total suspended load range from 300,000 metric tons, corresponding to an average residence time of about 2.3 months. Average accumulation rates calculated with the model ranged from about 0.024 mm month?1 to 0.150 mm month?1 for a net annual rate of 0.92 mm yr?1. This is in good agreement with geochemically determined sedimentation rates of 0.75±0.13 mm yr?1 and suggests an oceanic source of sediment equivalent to about 45% of the mud accumulated in the sound.  相似文献   

8.
We synthesized existing data on chemical contaminants in Long Island Sound (LIS) from published reports and unpublished databases. We found several cases of systematic differences between data sources, which complicated the tasks of understanding the health of LIS and of identifying trends over time. Of the three media examined—water, sediment, and biota—sediment (especially in western LIS) most often exhibited pollutant concentrations that were high relative to guidelines and to other estuaries. These high sediment concentrations did not appear to be efficiently transmitted to biota. With the exception of Cd, median pollutant levels in embayment sediments were not higher than in open-water sediments, but the highest levels found in embayments were much higher than at open-water sites, especially for Ag and Hg. Trends over time in contaminant levels were mixed. We identify the most problematic contaminants in LIS and recommend adding Ag to the LIS Study’s List of Contaminants of Concern.  相似文献   

9.
Significant improvements in water quality have been observed for several decades throughout much of the Hudson-Raritan Estuary, primarily as a result of regional abatement of municipal and industrial discharges. These improvements include area-wide, order-of-magnitude reductions in ambient coliform concentrations and significant increases in dissolved oxygen (DO) concentrations. In contrast to these improvements, DO in bottom waters of the western Long Island Sound (WLIS) appears to have decreased in the last two decades. Although there is no consensus as to why hypoxia in WLIS may have recently become more severe, several related hypotheses have been suggested, including an increase in eutrophication, increased density stratification, and changes in wastewater loads. To determine if eutrophication has increased in WLIS, trends in several indicators of eutrophication were examined from a long-term water quality data set. Since the mid-1980s surface DO supersaturation has increased, bottom minimum DO has decreased, and vertical DO stratification has increased in WLIS. Other areas of the Hudson-Raritan Estuary, such as Jamaica Bay and Raritan Bay, exhibit similar evidence of declining water quality and may be experiencing increasing eutrophication. Temporal changes in vertical density stratification indicate that surface to bottom temperature differences have increased to a greater extent and have had a more significant impact on bottom DO depletion in WLIS than in the shallower Jamaica Bay and Raritan Bay. Additional factors contributing to the observed decline in water quality include recent changes in wastewater loads and possible increases in upstream and nonpoint source loads.  相似文献   

10.
This paper uses results from the National Oceanic and Atmospheric Administration’s National Status and Trends Program (NS&T) to place the environmental quality of Long Island Sound in a broader perspective. It compares levels of contaminants in blue mussels from ten Long Island Sound sites and in sediments from seven Long Island Sound sites with concentrations in the same media at 87 and 221 other sites, respectively, where comparable samples were obtained. In sediments, the levels of both trace metals and organic contaminants tend to be relatively high for Long Island Sound sites. This is especially true for five of the twelve metals (silver, cadmium, copper, lead, and zinc) and for five of six categories of organic contaminants (total chlordane, low molecular weight polycyclic aromatic hydrocarbons (PAHs), high molecular weight PAHs, total polychlorinated biphenyls, and total dichlorodiphenyltrichloroethanes). In mussels, the organic contaminant categories exhibit relatively high levels, but this is not true for most of the metals. In fact, four of the metals—arsenic, mercury, selenium, and zinc—show evidence of relatively low levels in mussels from Long Island Sound compared to other NS&T locations.  相似文献   

11.
Zooplankton and chlorophyll-a samples and associated hydrographic data were collected at approximately weekly intervals in the Peconic Bay estuary for most of the period between May 1978 and June 1979. Surface zooplankton samples were obtained by simultaneously-towed 73 μm- and 202 μm-mesh nets, and subsurface samples were collected with 505 μm-mesh nets. Zooplankton numbers and displacement volumes fluctuated widely throughout the year, with highest values in early spring and summer. Juvenile or adult copepods accounted for means of 90.0% and 85.0% of the animals recorded for the 202 μm- and 73 μm-net samples, respectively. The combination of Acartia tonsa and A. hudsonica adults+copepodids accounted for a mean of 81.4% of the zooplankton recorded for the 202 μm-net samples, and the combination of copepod nauplii, Acartia spp. adults+copepodids, Oithona colcarva and Parvocalanus crassirostris accounted for a mean of 82.7% of the animals recorded for the 73 μm-net samples. Copepod nauplii were the most abundant zooplankters collected in the 73 μm-net samples, and they were generally collected in higher numbers than the total number of animals in the 202 μm-net samples. During the colder months, late copepodids and adults of larger copepod species comprised greater proportions of the total zooplankton than during the warmer months when nauplii and copepodids of smaller copepod species were predominant. The ctenophore Mnemiopsis leidyi and the medusa Cyanea capillata also had periods of abundance during warmer months. Differences between numbers of larger zooplankters collected over different depth intervals or in successive replicate tows over the same depth intervals, reveal the likely effects of both vertical and horizontal patchiness. Comparisons of zooplankton numbers from the present investigation, which were obtained with relatively fine-mesh nets, with values from previous studies in adjacent waters which used coarser-mesh nets, suggest that many previous investigations have seriously underestimated the numbers of smaller zooplankters, particularly copepod nauplii.  相似文献   

12.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

13.
A retrospective analysis of available data was conducted to characterize the spatial distribution and temporal trends in dissolved oxygen (DO) concentrations in Long Island Sound (LIS) over the past four decades. A general east-to-west gradient of decreasing bottom DO was evident in all historical data examined. In our review of data from the 1950s, collected by Gordon Riley and colleagues, and from contemporary surveys, we found no evidence of hypoxia (DO≤0.3, mg 1?1) in the Eastern Basin; however, in the deeper waters of the Central Basin, there is some evidence for a recent (1986) emergence of moderate hypoxia. The Western Basin experienced episodes of hypoxia during the 1970s which became more recurrent and possibly more severe in the late 1980s. The most severe, persistent and chronically recurrent hypoxia occurred throughout the water column of the East River and in bottom waters of the Western Narrows. An unprecedented episode of anoxia was observed in both the Western and Eastern Narrows regions of LIS in 1987. Previously, anoxia occurred rarely, was short-lived, and was confined to the East River. Statistical trend analyses revealed a significant increase in the summer minimum bottom DO in the lower and middle reaches of the East River over the past 20 years. Beginning in 1981, however, DO declined markedly in the adjacent Narrows bordering the Nassau County nearshore. The improvements in East River water quality over the previous 15–20 years appear to have been gained at the, expense of poorer water quality in the western sound. Mechanisms potentially responsible for the recent decline in bottom DO in western LIS are suggested.  相似文献   

14.
A material balance is constructed for excess 210Pb (relative to 226Ra) as a test of the retentivity of Long Island Sound for a reactive heavy metal. Excess 210Pb is supplied to Long Island Sound chiefly by direct atmospheric deposition [1 ± 0.2(dis·min?1)cm?2·yr?1]. Rivers supply less than 20% of the atmospheric flux, and other inputs, from open ocean waters, 226Ra decay, groundwater seepage, and sewage discharge, appear to be negligible. The total input of excess 210Pb represents approximately the flux required to maintain the inventory of excess 210Pb measured in sediment cores from central Long Island Sound; that is, excess 210Pb is lost from Long Island Sound chiefly by radioactive decay. The retention of excess 210Pb within Long Island Sound is achieved in two steps: a rapid removal of soluble 210Pb onto suspended particles and the ongoing entrapment of particles in the basin by the residual bottom-water influx from the east.  相似文献   

15.
Physical profile data (salinity, temperature, oxygen, and downwelling irradiance) and in situ incubations of light and dark bottles were used to characterize vertical structure and elucidate mechanisms controlling summertime hypoxia in western Long Island Sound. The period of oxygen depletion corresponded with the period of thermally-controlled stratification. Bulk density differences between surface and bottom waters were only 1.2 to 2.7 sigma-t units; but they were apparently sufficient to resist destratification by winds and tides. Thus oxygen depletion was a cumulative process through the summer. During the stratification period, net oxygen production (measured using light BOD bottles) was confined to a narrow surface zone of 1.8–4.5 m. Below this zone was an intermediate zone of high net oxygen uptake, beneath which was a subpycnoclinic zone where oxygen uptake was very low. Rates of total oxygen uptake (dark bottles) were greatest in the surface layer and diminished with depth. There was close coupling between physical conditions and metabolic structure. Vertical patterns of oxygen production and removal were strongest in calm weather. The location of the intermediate zone corresponded with that of the oxycline. The thickness of the zone and the steepness of the oxycline were determined by the depth and intensity of both physical stratification and biological production and respiration. The biological structure was weakened by physical mixing in the upper water column, and the intermediate zone disappeared with fall destratification. We hypothesize that biological uptake within the water column influences oxygen depletion through two mechanisms. (1) In bottom waters, uptake rates per unit volume are low, but bulk uptake is a significant factor in oxygen depletion because of the large volume of water involved. (2) The intermediate zone, where respiratory uptake is also significant, is strategically located between the surface zone of oxygen renewal and the bottom zone of depletion, where it constitutes an active filter which reinforces the pycnocline as a barrier to vertical oxygen dispersion. The magnitude of direct oxygen removal in the water column relative to removal by sediment oxygen demand and the potential effects of this biological filtering mechanism are important considerations for understanding eutrophication dynamics and managing Long Island Sound. Dynamic models which (1) underestimate the role of water column uptake and (2) incorporate only the two-zone characteristics of physical stratification will tend to (a) overestimate the contribution of sediments to summertime oxygen deficits and (b) overestimate rates of vertical dispersion and reventilation of bottom waters.  相似文献   

16.
Estimated pollutant loadings to Long Island Sound (LIS) are presented and discussed in the context of current information on population trends and land-use characteristics within the drainage basin of the sound. For the conventional pollutants (BOD, N, and P) and for most of the metals examined, the fluxes to LIS from wastewater treatment plants approach or exceed the fluxes from riverine sources. Urban runoff is a significant source for only a few contaiminants, such as lead and petroleum hydrocarbons. Atmospheric flux estimates made for other are s are extrapolated to LIS, and this source appears to be significant for lead, zinc, polynuclear aromatic hydrocarbons, and chlorinated pesticides. Continued population growth is projected through 2010, both in the urban centers of the western sound and in the coastal counties surrounding the central and eastern portions of LIS. This growth will place increased pollution pressure on the sound and increased demands on already scarce coastal and estuarine land-use categories. Close interaction between environmental planners, managers, and scientists is required to identify effective control strategies for reducing existing pollutant stress to the sound and for minimizing the effects of future development.  相似文献   

17.
Winter flounder (Pseudopleuronectes americanus) were sampled from three sites located near Norwalk, New Haven, and Niantic, Connecticut, in Long Island Sound during February 1987, to evaluate the degree of chemical contamination and to determine possible effects of contaminant exposure. At each site, sediment and infaunal invertebrates were also collected and analyzed for trace metals and organic chemicals. Specimens of liver and kidney from winter flounder were examined for histopathological conditions, including the presence of macrophage aggregates in liver tissue. Liver samples were also analyzed for DNA damage (i.e., the formation of adducts between DNA and chemical contaminants). Blood samples were collected and analyzed for erythrocyte micronuclei. The sampling site near New Haven was determined to be the most affected site, from the standpoints of greater chemical contamination and possible effects on winter flounder. Concentrations of aromatic hydrocarbons (AHs) and polychlorinated biphenyls (PCBs) were highest in sediment from this site, and the highest prevalences of the histopathological changes and DNA alterations were also found in the livers of winter flounder from this site. No differences in the concentrations of contaminants in fish or in frequencies of erythrocyte micronuclei in fish blood were found between sites. None of the sites sampled had contaminant levels or prevalences of lesions as high as previously found at other East Coast locations (e.g., Boston Harbor, Massachusetts, Raritan Bay, New York). Overall, our results indicate moderate levels of pollution at two of the urban sites in Long Island Sound and provide a framework for expanded studies to better define the extent and impact of chemical pollution in Long Island Sound.  相似文献   

18.
The role of zooplankton in a salt marsh ecosystem was studied in Flax Pond, Old Field, N. Y., a 30-hectare tidal pond adjacent to Long Island Sound. Various marine crustaceans accounted for over 95% of the zooplankton caloric biomass in all but three months, in which ctenophores (Mnemiopsis leidyi) accounted for about 20%. Mass balance analysis of crustacean biomass showed a seasonal trend with increased “consumption” by the marsh from July to November. Analysis of groups (or species) for all months showed total numbers were reduced by passing through, or interacting with, the marsh. The most abundant group for each sample date also was significantly reduced from outflowing waters for all months, as were the group copepodids and miscellaneous calanoids from July to November. The energy requirements for the crustacean zooplankton community could have been supplied amply by the estimated standing crop of phytoplankton in the marsh. Phytoplankton net primary production was low, but it was ample to satisfy crustacean energy needs in all months. Crustaceans and phytoplankton alone were not enough to support estimated ctenophore nutrition requirements in summer. Therefore, detritus may also have been an important ctenophore food source.  相似文献   

19.
Three lines of evidence based on data from more than 400 boreholes and vibrocores have been used to reconstruct the evolution of the barrier islands during the Holocene transgression in southern Long Island, New York: (1) the Holocene transgressive stratigraphic sequence behind the present barriers, (2) the stratigraphic patterns of the inner shelf, and (3) the morphology of the now-buried late Pleistocene coastal features. The extensive preservation of backbarrier sediments, radiocarbon dated between 7000 and 8000 yr BP, on the inner shelf of southern Long Island suggests that the barriers have not retreated by continuous shoreface erosion alone, but have also undergone discontinuous retreat by in-place ‘drowning’ of barriers and stepwise retreat of the surf zone. Such stepwise retreat of the surf zone has prevented the backbarrier sediments from being reworked. Based on the presence of submerged barrier sand bodies in seismic records, it is inferred that about 9000 years ago, when the sea stood about 24 m below the present sea level, a chain of barriers developed on the present shelf about 7 km offshore of the present barriers. With continued sea-level rise, the – 24 m barrier built upward until the sea reached about – 15 m MSL, just prior to 7000 yr BP. The barriers were then submerged by the rapidly rising sea, and the surf zone shifted rapidly landward to a position about 2 km from the present shoreline. The surf zone overstepped to the landward margin of the old lagoon, which had become fixed at the steep seaward face of mid-Wisconsinan (?) or Sangamonian coastal barriers. During the past 5000 or 6000 years, the shoreface has retreated continuously by about 2 km. Evidence from southern Long Island and elsewhere in regions of coastal submergence indicates that rapid sea-level rise and low sand supply seem to favour the stepwise retreat of barriers, whereas slow rates of submergence and a greater supply of sand generally favour continuous shoreface retreat. Stationary upbuilding, or seaward progradation of barriers may occur when supply of sand is great, and/or submergence is slowed or reversed. Morphologic highs on the pretransgression surface (such as old barrier ridges) tend to fix the migrating barrier shoreline during either continuous retreat, or stepwise retreat of barriers.  相似文献   

20.
Tidal marsh degradation has been attributed to a number of different causes, but few studies have examined multiple potential factors at the same sites. Differentiating the diverse drivers of marsh loss is critical to prescribing successful interventions for conservation and restoration of this important habitat. We evaluated two hypotheses for vegetation loss at two marshes in Long Island Sound (LIS): (1) marsh submergence, caused by an imbalance between sea-level rise and marsh accretion, and (2) defoliation associated with herbivory by the purple marsh crab, Sesarma reticulatum. At our western LIS site, we found no evidence of herbivory: crabs were scarce, and crab-exclusion cages provided no benefit. We attribute degradation at that site to submergence, a conclusion supported by topographic and hydrologic data showing that loss of vegetation occurred only in wetter parts of the marsh. In contrast, at our central LIS site, our observations were consistent with herbivory as a driving force: There were substantial populations of Sesarma, crab-exclusion cages allowed plants to thrive, and vegetation loss took place across a variety of elevations. We also analyzed soil conditions at both sites, in order to determine the signatures of different degradation processes and assess the potential for restoration. At the submergence site, unvegetated soils exhibited high bulk density, low organic content, and low soil strength, posing significant biogeochemical challenges to re-colonization by vegetation. At the herbivory site, unvegetated soils had a characteristic “riddled-peat” appearance, resulting from expansion and erosion of Sesarma burrow networks. The high redox potential and organic content of those soils suggested that revegetation at the herbivory site would be likely if Sesarma populations could be controlled before erosion leads to elevation loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号