共查询到20条相似文献,搜索用时 33 毫秒
1.
Daily and annual integrated rates of primary productivity and community respiration were calculated using physiological parameters
measured in oxygen-based photosynthesis-irradiance (P-I) incubations at 8 stations throughout central and western Long Island
Sound (cwLIS) during the summer and autumn of 2002 and 2003 and the late spring of 2003. Each calculation takes into account
actual variations in incident irradiance over the day and underwater irradiance and standing stock with depth. Annual peak
rates, ±95% confidence interval of propagated uncertainty in each measurement, of gross primary production (GPP, 1,730±610
mmol O2 m−2 d−1), community respiration (Rc, 1,660±270 mmol O2 m−2 d−1), and net community production (NCP, 1,160±1,100 mmol O2 m−2 d−1) occurred during summer at the western end of the Sound. Lowest rates of GPP (4±11 mmol O2 m−2 d−1), Rc (−50±300 mmol O2 m−2 d−1), and NCP (−1,250±270 mmol O2 m−2 d−1) occurred during late autumn-early winter at the outer sampled stations. These large ranges in rates of GPP, Rc, and NCP throughout the photic zone of cwLIS are attributed to seasonal and spatial variability. Algal respiration (Ra) was estimated to consume an average of 5% to 52% of GPP, using a literature-based ratio of Ra:Rc. From this range, we established that the estimated Ra accounts for approximately half of GPP, and was used to estimate daily net primary production (NPP), which ranged from 2
to 870 mmol O2 m−2 d−1 throughout cwLIS during the study. Annual NPP averaged 40±8 mol O2 m−2 yr−1 for all sampled stations, which more than doubled along the main axis of the Sound, from 32±14 mol O2 m−2 yr−1 at an eastern station to 82±25 mol O2 m−2 yr−1 at the western-most station. These spatial gradients in productivity parallel nitrogen loads along the main axis of the Sound.
Daily integrals of productivity were used to test and formulate a simple, robust biomass-light model for the prediction of
phytoplankton production in Long Island Sound, and the slope of the relationship was consistent with reports for other systems. 相似文献
2.
Trace metals and organic contaminants concentrations are monitored annually in surface sediments, blue mussel tissue, and winter flounder livers at multiple sites in Long Island Sound by National Oceanic and Atmospheric Administration’s National Status and Trends (NS&T) program for Marine Environmental Quality. The NS&T program is also conducting various studies on the bioeffects of contaminants in the sound. Three years of monitoring results indicate organic and elemental contaminants concentrations in sediments and biota at sites in the western portion of the sound are high on a national scale. Possible decreasing trends in cadmium and chlordane in the sound are suggested by the 1986–1988 data for their concentrations in mussels. A comparison between NS&T Mussel Watch results and those of the Environmental Protection Agency’s Mussel Watch, conducted from 1976 through 1978, indicated a decadal increase in copper concentrations and a decrease in lead in the sound. Bioeffects studies in the sound have revealed responses to contamination only in localized zones where contaminant levels are very high. 相似文献
3.
4.
Significant improvements in water quality have been observed for several decades throughout much of the Hudson-Raritan Estuary, primarily as a result of regional abatement of municipal and industrial discharges. These improvements include area-wide, order-of-magnitude reductions in ambient coliform concentrations and significant increases in dissolved oxygen (DO) concentrations. In contrast to these improvements, DO in bottom waters of the western Long Island Sound (WLIS) appears to have decreased in the last two decades. Although there is no consensus as to why hypoxia in WLIS may have recently become more severe, several related hypotheses have been suggested, including an increase in eutrophication, increased density stratification, and changes in wastewater loads. To determine if eutrophication has increased in WLIS, trends in several indicators of eutrophication were examined from a long-term water quality data set. Since the mid-1980s surface DO supersaturation has increased, bottom minimum DO has decreased, and vertical DO stratification has increased in WLIS. Other areas of the Hudson-Raritan Estuary, such as Jamaica Bay and Raritan Bay, exhibit similar evidence of declining water quality and may be experiencing increasing eutrophication. Temporal changes in vertical density stratification indicate that surface to bottom temperature differences have increased to a greater extent and have had a more significant impact on bottom DO depletion in WLIS than in the shallower Jamaica Bay and Raritan Bay. Additional factors contributing to the observed decline in water quality include recent changes in wastewater loads and possible increases in upstream and nonpoint source loads. 相似文献
5.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation. 相似文献
6.
Larry K. Benninger 《Geochimica et cosmochimica acta》1978,42(8):1165-1174
A material balance is constructed for excess 210Pb (relative to 226Ra) as a test of the retentivity of Long Island Sound for a reactive heavy metal. Excess 210Pb is supplied to Long Island Sound chiefly by direct atmospheric deposition [1 ± 0.2(dis·min?1)cm?2·yr?1]. Rivers supply less than 20% of the atmospheric flux, and other inputs, from open ocean waters, 226Ra decay, groundwater seepage, and sewage discharge, appear to be negligible. The total input of excess 210Pb represents approximately the flux required to maintain the inventory of excess 210Pb measured in sediment cores from central Long Island Sound; that is, excess 210Pb is lost from Long Island Sound chiefly by radioactive decay. The retention of excess 210Pb within Long Island Sound is achieved in two steps: a rapid removal of soluble 210Pb onto suspended particles and the ongoing entrapment of particles in the basin by the residual bottom-water influx from the east. 相似文献
7.
D. A. Wolfe R. Monahan P. E. Stacey D. R. G. Farrow A. Robertson 《Estuaries and Coasts》1991,14(3):224-236
Estimated pollutant loadings to Long Island Sound (LIS) are presented and discussed in the context of current information on population trends and land-use characteristics within the drainage basin of the sound. For the conventional pollutants (BOD, N, and P) and for most of the metals examined, the fluxes to LIS from wastewater treatment plants approach or exceed the fluxes from riverine sources. Urban runoff is a significant source for only a few contaiminants, such as lead and petroleum hydrocarbons. Atmospheric flux estimates made for other are s are extrapolated to LIS, and this source appears to be significant for lead, zinc, polynuclear aromatic hydrocarbons, and chlorinated pesticides. Continued population growth is projected through 2010, both in the urban centers of the western sound and in the coastal counties surrounding the central and eastern portions of LIS. This growth will place increased pollution pressure on the sound and increased demands on already scarce coastal and estuarine land-use categories. Close interaction between environmental planners, managers, and scientists is required to identify effective control strategies for reducing existing pollutant stress to the sound and for minimizing the effects of future development. 相似文献
8.
Three lines of evidence based on data from more than 400 boreholes and vibrocores have been used to reconstruct the evolution of the barrier islands during the Holocene transgression in southern Long Island, New York: (1) the Holocene transgressive stratigraphic sequence behind the present barriers, (2) the stratigraphic patterns of the inner shelf, and (3) the morphology of the now-buried late Pleistocene coastal features. The extensive preservation of backbarrier sediments, radiocarbon dated between 7000 and 8000 yr BP, on the inner shelf of southern Long Island suggests that the barriers have not retreated by continuous shoreface erosion alone, but have also undergone discontinuous retreat by in-place ‘drowning’ of barriers and stepwise retreat of the surf zone. Such stepwise retreat of the surf zone has prevented the backbarrier sediments from being reworked. Based on the presence of submerged barrier sand bodies in seismic records, it is inferred that about 9000 years ago, when the sea stood about 24 m below the present sea level, a chain of barriers developed on the present shelf about 7 km offshore of the present barriers. With continued sea-level rise, the – 24 m barrier built upward until the sea reached about – 15 m MSL, just prior to 7000 yr BP. The barriers were then submerged by the rapidly rising sea, and the surf zone shifted rapidly landward to a position about 2 km from the present shoreline. The surf zone overstepped to the landward margin of the old lagoon, which had become fixed at the steep seaward face of mid-Wisconsinan (?) or Sangamonian coastal barriers. During the past 5000 or 6000 years, the shoreface has retreated continuously by about 2 km. Evidence from southern Long Island and elsewhere in regions of coastal submergence indicates that rapid sea-level rise and low sand supply seem to favour the stepwise retreat of barriers, whereas slow rates of submergence and a greater supply of sand generally favour continuous shoreface retreat. Stationary upbuilding, or seaward progradation of barriers may occur when supply of sand is great, and/or submergence is slowed or reversed. Morphologic highs on the pretransgression surface (such as old barrier ridges) tend to fix the migrating barrier shoreline during either continuous retreat, or stepwise retreat of barriers. 相似文献
9.
Long Island Sound (LIS), a large urban estuary in the northeastern USA, receives freshwater from many rivers along its northern shore. The size of these rivers varies widely in terms of basin area and discharge. The Regional Ocean Modeling System (ROMS) was applied with conservative passive tracers to identify the distribution, mixing, freshwater residence times, and storm response for all of LIS’s river systems during the summer of 2013. A watershed model was applied to overcome the lack of adequate river discharge observations for coastal watersheds. The Connecticut River was the largest contributor to riverine freshwater throughout the estuary despite its entry point near the mouth. The Connecticut River strengthened bulk stratification in the eastern LIS the most but acted to weaken stratification near the mouths of other rivers and in far western LIS by freshening waters at depth. The Housatonic and Hudson Rivers had the strongest influence on stratification in central and western LIS, respectively. Smaller coastal rivers were the most influential in strengthening stratification near the southwestern Connecticut shoreline. The influence of small coastal rivers was amplified after a major storm due to shorter storm response times relative to the larger rivers. Overall, river water was close to a well-mixed state throughout LIS, but more stratified near river mouths. Freshwater residence time estimates, meanwhile, indicated monthly to multi-seasonal time scales (43 to 180 days) and grew longer with greater distance from the LIS mouth. 相似文献
10.
The distribution and abundance of motile cells of the toxic dinoflagellateGonyaulax tamarensis Lebour were monitored in estuarine waters of Long Island, a region with no previous history of shellfish toxicity. The population distribution was patchy, with the species detected in 40% of 115 estuaries examined during the spring bloom season. More detailed studies in four estuaries indicated that the dinoflagellate was most abundant in the headwater regions, with concentrations falling to undetectable levels at the mouths.G. tamarensis cell concentrations did not exceed 105 cells per 1 and often remained an order of magnitude lower. In several instances, population growth and accumulation ceased under seemingly favorable environmental and nutritional conditions. 相似文献
11.
Contrasting Decadal-Scale Changes in Elevation and Vegetation in Two Long Island Sound Salt Marshes 总被引:1,自引:0,他引:1
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3?±?0.24 mm year?1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2?±?0.52 mm year?1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment availability, salinity, and elevation capital. Together, these two systems provide critical insight into the relationships between marsh elevation, high marsh plant community, and changing hydroperiods. Our results highlight that not all marshes in Southern New England may be responding to accelerated rates of RSLR in the same manner. 相似文献
12.
13.
Linda E. Bireley 《Estuaries and Coasts》1984,7(3):242-247
A nested design was used to analyze the variance of the proportions or percent species composition of shore-zone finfish assemblages in the vicinity of the Millstone Nuclear Power Station in eastern Long Island Sound. The relative importance of five selected shore-zone species was found to be significantly influenced by both station and season within a year. Also included in the nested ANOVA model were effects due to period of plant operation (no units operating, one unit operating and two units operating) and year within period. Neither of these two effects was found to influence the percent species composition. The results of this study suggest that a nested ANOVA of percent species composition can be useful for detecting changes in assemblages of finfish species over time and space. 相似文献
14.
Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York 总被引:1,自引:1,他引:1
Christine C. Shepard Vera N. Agostini Ben Gilmer Tashya Allen Jeff Stone William Brooks Michael W. Beck 《Natural Hazards》2012,60(2):727-745
Sea level rise threatens to increase the impacts of future storms and hurricanes on coastal communities. However, many coastal
hazard mitigation plans do not consider sea level rise when assessing storm surge risk. Here we apply a GIS-based approach
to quantify potential changes in storm surge risk due to sea level rise on Long Island, New York. We demonstrate a method
for combining hazard exposure and community vulnerability to spatially characterize risk for both present and future sea level
conditions using commonly available national data sets. Our results show that sea level rise will likely increase risk in
many coastal areas and will potentially create risk where it was not before. We find that even modest and probable sea level
rise (.5 m by 2080) vastly increases the numbers of people (47% increase) and property loss (73% increase) impacted by storm
surge. In addition, the resulting maps of hazard exposure and community vulnerability provide a clear and useful example of
the visual representation of the spatial distribution of the components of risk that can be helpful for developing targeted
hazard mitigation and climate change adaptation strategies. Our results suggest that coastal agencies tasked with managing
storm surge risk must consider the effects of sea level rise if they are to ensure safe and sustainable coastal communities
in the future. 相似文献
15.
Sublethal abnormalities were examined in developing embryos of the winter flounder,Pseudopleuronectes americanus, as part of a study of its early reproductive success in Long Island Sound and two sites in Boston Harbor. These sites represented varying levels of anthropogenic contamination that were possibly affecting reproduction, as ascertained by chromosomal abnormalities and lowered developmental rates in the embryos. Effort was focused on examination of blastula and tail-bund embryos from field-captured females spawned at the laboratory. Abnormalities observed included evidence of cytotoxicity and chromosome damage. Embryos of fish from New Haven were usually the most aberrant, while embryos from other sites, notably Hempstead, Shoreham, and both Boston Harbor stations, showed subtle indications of abnormality. 相似文献
16.
Late summer hypoxia (<3 ppm oxygen) in western Long Island Sound (WLIS) is a persistent environmental and management issue whose controlling processes are poorly understood. Measured rates of sediment and water-column oxygen consumption in the bottom water suggest that a condition of no oxygen should be attained on the time scale of 13–30 d. Observations, however, indicate the onset of hypoxia is of the order 150 d. Therefore, horizontal and/or vertical transport of oxygen into the area of hypoxia must play an important role. Hypoxia decreases benthic activity and the sediment flux of222Rn. The resulting horizontal gradient in bottom water222Rn was measured and used to estimate the effective horizontal transport rate (>5–50 m2 s?1), which is considerably slower than previous estimates. Scale analysis of the hypoxia process indicates that horizontal transport rates alone can explain the slow progression of hypoxia in XLIS but that vertical processes may also be capable of delaying the onset of hypoxia especially under conditions of weak stratification or weak intermediate layer oxygen consumption. This scale analysis indicates a delicately balanced process that is sensitive to both climatologically-driven variability in the rates of horizontal and vertical transport as well as the biologically-driven rates of oxygen consumption. An improved ability to predict and/or control hypoxia must be based on a better understanding of temporal and spacial variations in circulation, mixing, and stratification as well as the biological processes in the water column and the sediments. 相似文献
17.
A. I. Chernova D. V. Metelkin N. Yu. Matushkin V. A. Vernikovsky A. V. Travin 《Doklady Earth Sciences》2017,475(2):849-853
The paper presents results of geochronological and paleomagnetic studies of the volcanogenicsedimentary sequence of Henrietta Island in the East Siberian Sea. Our 40Ar/39Ar investigations confirm existing ideas that the bottom part of the section formed in the Ediacaran (~565 Ma) and that the basalts in the top of the section formed before the middle Cambrian (~520 Ma). Calculated paleomagnetic data confirm that during the rocks formation the territory of present-day Henrietta Island was located close to the 20° latitude, which lets us adjust some information published earlier on the age and natural remanent magnetization of the dolerite dikes of the nearby Jeannette Island. The new data also let us propose that a regional tectonothermal event, probably caused by accretion-related processes, took place at the beginning of the Ordovician. 相似文献
18.
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L?1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area. 相似文献
19.
Doreen M. Monteleone William T. Peterson George C. Williams 《Estuaries and Coasts》1987,10(3):246-254
Enumeration data from over 2,300 ichthyoplankton samples collected during 17 yr, spanning a 32-yr interval (1951–1983), were compiled to determine interannual variations in density of sand lance larvae. Years of relatively high densities were noted during the winters of 1965–1966 and 1978–1979 and low densities in 1971–1974. A regular increase in numbers during the late 1970’s and the peak in 1978–1979 coincided with increases in population size found throughout the coastal northwest Atlantic Ocean. Densities in Long Island Sound began to decline in 1980 and this continued through 1983. In contrast, densities throughout coastal Atlantic areas during the 1980’s remained at least as high as they were 1976–1978. Interannual fluctuations in density of sand lance larvae could be partially explained by water temperatures in December. Warm Decembers were associated with low larval densities. 相似文献
20.
Long records of monthly salinity observations along the axis of Chesapeake Bay, Delaware Bay, and Long Island Sound are used
to test a simple advection–dispersion model of the salt distribution in linearly tapered estuaries developed in a previous
paper. We subdivide each estuary into three to five segments, each with linear taper allowing a distributed input of fresh
water, and evaluate the dispersion in each segment. While Delaware Bay has weak dispersion and a classical sigmoidal salinity
structure, Long Island Sound and Chesapeake Bay are more dispersive and have relatively small gradients in the central stretches.
Long Island Sound is distinguished by having a net volume and salt flux out of its low-salinity end resulting in a smaller
range of salinity and increasing axial gradients at its head rather than the usual asymptotic approach to zero salinity. Estimates
of residence times based on model transport coefficients show that Long Island Sound has the most rapid response to fresh-water
flux variations. It also has the largest amplitude cycle in river discharge fluctuation. In combination, these cause the large
seasonal variation in the salinity structure relative to interannual variability in Long Island Sound as compared with Chesapeake
Bay and Delaware Bay. 相似文献