首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Newark Island layered intrusion, a composite intrusion displaying a similar fractionation sequence to the Skaergaard, has both dikes which preserved liquids fed into the intrusion and chilled pillows of liquids resident in the chamber. This study reports experimentally determined one atmosphere liquid lines of descent of these compositions as a function of oxygen fugacity which varies from QFM (quartz-fayalite-magnetite) to 0.5 log10 units above IW (iron-wustite). These experiments reveal a strong oxygen fugacity dependence on the order of appearance and relative abundances of the Fe–Ti oxide minerals. Titanomagnetite saturates prior to ilmenite at QFM, but the order is reversed at lower oxygen fugacities. In the layered series of the Newark Island intrusion, ilmenite arrives shortly before titanomagnetite and the titanomagnetite/ilmenite ratio decreases monotonically after the cumulus appearance of titanomagnetite. Comparison of the crystallization sequence in the intrusion with that of the experiments requires that the oxygen fugacity in the intrusion increased relative to QFM before titanomagnetite saturation and decreased afterward, but always remained between the QFM and IW buffers. Similar trends in the modes of the Fe–Ti oxides (ilmenite and titanomagnetite) in the Skaergaard, Kiglapait, and Somerset Dam intrusions along with Fe2O3/FeO ratios in MORBs suggest that such a temperature-oxygen fugacity path may be typical of tholeiitic magma differentiation. Calculations of the temperature-density paths of the experimental liquids indicate that, at all possible oxygen fugacities, the density must have decreased abruptly after Fe–Ti oxide saturation. Accordingly, liquids replenishing the intrusion after Fe–Ti oxide saturation should pond at the bottom of the chamber, quenching against older cumulates. Field observation at the Newark Island intrusion confirm this prediction. The similarities in the fractionation paths of several other layered intrusions to that of the Newark Island intrusion suggest that the density of the liquids in these intrusions also decreased after Fe–Ti oxide saturation. Experiments on a suggested initial Skaergaard liquid are consistent with this model.  相似文献   

2.
The evolved, iron-rich rocks of the tholeiitic Bushveld and Skaergaard intrusions are similar in containing cumulus magnetite, ilmenite, plagioclase, clinopyroxene, apatite and olivine, and also orthopyroxenes/pigeonite in Bushveld. Here, we evaluate their liquid evolution trends using the total iron content in plagioclase determined by electron microprobe analyses. To aid this analysis a revised mass balance model for the liquid evolution of Skaergaard is presented. For plagioclase in the Upper Zone of Skaergaard it was previously demonstrated that total FeO increases from ~0.25 to ~0.45 wt% with differentiation and correlates inversely with An% [100 × Ca/(Na + Ca)]. The reverse trend is observed in two recently published datasets for Bushveld, showing that total FeO in plagioclase decreases upward through the magnetite-bearing Upper Zone from ~0.30 to ~0.15% and from ~0.40 to ~0.25% in the western and northern limbs, respectively, and correlates positively with An%. The partition coefficient of total iron between plagioclase and magma increases with oxidation and polymerisation in the liquid. Although Bushveld formed under slightly more oxidizing conditions than Skaergaard, differences in the partition coefficients cannot explain the two observed trends. We therefore conclude that the differentiation trends of the liquids subsequent to magnetite saturation were fundamentally different. The inferred liquid composition for Bushveld contained about 15 wt% total FeO at the level of magnetite-in, which is slightly less than the total FeO content of the subsequent cumulates. In contrast, the Skaergaard liquid contained more total FeO than the ensuing cumulates. As a result, in Bushveld residual liquids total FeO decreased after magnetite saturation, whereas in Skaergaard the residual liquids continued to become enriched in iron. This conclusion is corroborated by simple mass balance calculations between modelled residual liquids and extracted cumulate rocks. Despite the mineralogical similarities of evolved iron-rich rocks of Skaergaard and Bushveld, their liquid evolution trends were very different, and generalizations about the extent of iron enrichment in tholeiitic magmas should be avoided.  相似文献   

3.
The 660 m thick Basistoppen sill is an Eocene, tholeiitic, layeredintrusion emplaced in the upper part of the Skaergaard complexshortly after solidification of the Skaergaard magma. Despiteits small size, the Basistoppen sill has one of the most extensivedifferentiation sequences known. The ranges of the solid solutionsin olivine, plagioclase, and pyroxene from the Basistoppen arecomparable to those in the Skaergaard and Bushveld intrusions.The rocks of the sill are orthocumulates composed of approximately35% trapped liquid and 65% cumulus minerals and can be dividedinto zones based on changes in the cumulus mineral assemblage.From the base upward those zones are: a Gabbro Picrite Zonecontaining cumulus olivine, Fe-Cr spinel, and minor biotite;a Bronzite Gabbro Zone containing cumulus orthopyroxene, Ca-richclinopyroxene, plagioclase, and minor Fe-Cr spinel; a PigeoniteGabbro Zone containing cumulus plagioclase, Ca-rich clinopyroxene,pigeonite, magnetite, and minor ilmenite; and a Fayalite DioriteZone containing cumulus plagioclase, Ca-rich clinopyroxene,magnetite, ilmenite, apatite, and olivine. The Basistoppen isoverlain by a zoned granophyre sill that was most likely derivedin part from the Basistoppen magma and in part from melted Precambriangneiss. The excellent exposure, uncomplicated structure, goodchilled margin, and lack of strong modal layering facilitatethe calculation of a differentiation trend for the Basistoppensill. During crystallization the Basistoppen magma became progressivelyricher in Fe, P, Na, K, Zn, Rb, Zr, La, Sm, and Th, became progressivelypoorer in Mg, Ca, Al, Cr, and Ni, and remained relatively unchangedin Si, Sc, and Sr through at least the first 90% of crystallization.  相似文献   

4.
Certain dikes in the Kangerdlugssuaq area of east Greenland correspond rather closely with the presumed bulk composition of the nearby Skaergaard intrusion and therefore allow a better characterization of the chemistry of the Skaergaard initial magma than has so far been possible. They indicate that Wager's chilled margin composition needs only minor revision, except in the case of Al2O3. Other dikes belonging to the same suite show a range of compositions extending up to the differentiation stage represented by the lower part of the Skaergaard middle zone and these allow an investigation, using computer least squares and Rayleigh fractionation modelling, of the early part of the Skaergaard differentiation trend which is otherwise unexposed. We conclude that the only important cumulus phases at this stage were olivine and plagioclase but clmopyroxene grew by heteradcumulus growth and effectively eliminated all intercumulus liquid. The liquids described here are similar to many ocean-floor basalts.  相似文献   

5.
The Baima layered intrusion is located in the central part of the Emeishan Large Igneous Province (ELIP). The N–S striking intrusion is ~ 24 km long and ~ 2 km thick and dips to the west. Based on variations in modal proportions and cumulus mineral assemblages, the intrusion from the base to the top is simply subdivided into a lower zone (LZ) with most of the economic magnetite layers, and an upper zone (UZ) with apatite-bearing troctolite and gabbro. The rock textures suggest crystallization of the Fe–Ti oxide slightly later than plagioclase (An67-54) but relatively earlier than olivine (Fo74-55), followed by clinopyroxene and finally apatite.Relatively low olivine forsterite content and abundant ilmenite exsolution lamellae in clinopyroxene indicate that the Baima parental magma is a highly evolved Fe–Ti-rich magma. Via MELTS model, it demonstrates that under a closed oxygen system, extensive silicate mineral fractionation of a picritic magma might lead to Fe and Ti enrichment and oxygen fugacity elevation in the residual magma. When such Fe–Ti-rich magma ascends to the shallower Baima intrusion, the Fe–Ti oxides may become an early liquidus phase. Well-matched olivine and plagioclase microprobe data with the results of MELTS calculation, combined with relatively low CaO content in olivine (0.02–0.08 wt.%) indicate that wall-rock contamination probably plays a weak role on oxygen fugacity elevation and the early crystallization of Fe–Ti oxides. Several reversals in whole-rock chromium and plagioclase anorthite contents illustrate that multiple recharges of such Fe–Ti-rich magma mainly occurred along the lower part of the Baima magma chamber. Frequent Fe–Ti-rich magma replenishment and gravitational sorting and settling are crucial for the development of thick Fe–Ti oxide layers at the base of the Baima layered intrusion.  相似文献   

6.
The Grader layered intrusion is part of the Havre-Saint-Pierre anorthosite in the Grenville Province (Quebec, Canada). This intrusion has a basin-like morphology and contains significant resources of Fe–Ti–P in ilmenite and apatite. Outcropping lithologies are massive oxide alternating with anorthosite layers, banded ilmenite–apatite–plagioclase rocks and layered oxide apatite (gabbro-)norites. Drill cores provide evidence for stratigraphic variations of mineral and whole rock compositions controlled by fractional crystallization with the successive appearance of liquidus phases: plagioclase and ilmenite followed by apatite, then orthopyroxene together with magnetite, and finally clinopyroxene. This atypical sequence of crystallization resulted in the formation of plagioclase–ilmenite–apatite cumulates or “nelsonites” in plagioclase-free layers. Fine-grained ferrodiorites that cross-cut the cumulates are shown to be in equilibrium with the noritic rocks. The high TiO2 and P2O5 contents of these assumed liquids explains the early saturation of ilmenite and apatite before Fe–Mg silicates, thus the nelsonites represent cumulates rather than crystallized Fe–Ti–P-rich immiscible melts. The location of the most evolved mineral and whole rock compositions several tens of meters below the top of the intrusion, forming a sandwich horizon, is consistent with crystallization both from the base and top of the intrusion. The concentrations of V and Cr in ilmenite display a single fractionation path for the different cumulus assemblages and define the cotectic proportion of ilmenite to 21 wt.%. This corresponds to bulk cotectic cumulates with ca. 8 wt.% TiO2, which is significantly lower than what is commonly observed in the explored portion of the Grader intrusion. The proposed mechanism of ilmenite-enrichment is the lateral removal of plagioclase due to its relative buoyancy in the dense ferrodiorite melt. This plagioclase has probably accumulated in other portions of the intrusion or has not been distinguished from the host anorthosite.  相似文献   

7.
Several recent publications suggest that the appearance of Fe-Ti oxides terminates iron enrichment and starts pronounced silica enrichment (the Bowen trend) during the differentiation of tholeiitic basalt. However, this does not appear to hold for the Skaergaard intrusion. New data from a ∼950 m long drill core (90–22) through its Upper Zone reveal that: (1) iron in plagioclase increases from ∼0.25 to ∼0.45 wt% FeOT with fractionation of evolved oxide ferrodiorites (An46-32) and (2) the evolving liquid, which is modelled by incremental bulk-rock summation, increased its iron content from 20.1 to 26.5 wt% FeOT and its silica content from 47.4 to 49.6 wt% SiO2 with fractional crystallisation (the Fenner trend). Positive correlation between modelled iron-content of the magmas, and measured iron-content of plagioclase, confirms that iron enrichment is petrologically feasible even with Fe-Ti oxides in the fractionating assemblage. As suggested by previous authors, fractional crystallisation closed to oxygen exchange is the likely reason why some layered intrusions diverge from the Bowen mechanism of differentiation. It is emphasised that both trends seem to exist in nature. Received:13 May 1996 / Accepted:5 January 1997  相似文献   

8.
产于层状镁铁质-超镁铁质岩体中的太和岩浆型Fe-Ti氧化物矿床是峨眉山大火成岩省内带几个超大型Fe-Ti氧化物矿床之一。太和岩体长超过3km,宽2km,厚约1.2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5%~12%磷灰石、20%~35%Fe-Ti氧化物、50%~60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO2、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO分别与TiO2、MgO显示负相关,而FeO分别与Fe2O3、MnO显示正的相关,且TiO2、FeO、MnO、MgO含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr2O3(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿Cr2O3(0.00%~0.03%)显著降低,且这些磁铁矿Cr2O3含量变化与单斜辉石Cr含量和斜长石An牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti+V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。  相似文献   

9.
New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6–7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units are composed of 2–10 m thick melanocratic layers rich in clinopyroxene and sometimes olivine, relative to the thicker overlying leucocratic oxide gabbros. While the overall compositional variation is limited (Mg# clinopyroxene 72–84; An% plagioclase 56–85), the melanocratic bases display spikes in Mg# and Cr2O3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An-rich) indicate that the recharge magma carried plagioclase xenocrysts (high An-type). The lack of evolved gabbros suggests formation in a dynamic magma chamber with frequent recharge, tapping and fractionation. Modelling of these compositional trends shows that the parent magma was similar to known transitional olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200–300 m. Such a “mushy” magma chamber is akin to volcanic plumbing systems in settings of high magma supply rate including the mid-ocean ridges and present-day magma chambers over the Iceland mantle plume. The Austurhorn central volcano likely formed in an off-rift flank zone proximal to the Iceland mantle plume during a major rift relocation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The Panzhihua gabbroic layered intrusion is associated withthe 260 Ma Emeishan Large Igneous Province in SW China. Thissill-like body hosts a giant Fe–Ti–V oxide depositwith 1333 million ton ore reserves, which makes China a majorproducer of these metals. The intrusion has a Marginal zoneof fine-grained hornblende-bearing gabbro and olivine gabbro,followed upward by Lower, Middle, and Upper zones. The Lowerand Middle zones consist of layered melanogabbro and gabbrocomposed of cumulate clinopyroxene, plagioclase, and olivine.These zones also contain magnetite layers. The Upper zone consistschiefly of leucogabbro composed of plagioclase and clinopyroxenewith minor olivine. Most rocks in the body show variable-scalerhythmic modal layering in which dark minerals, primarily clinopyroxene,dominate in the lower parts of each layer, and lighter minerals,primarily plagioclase, dominate in the upper parts. The oxideores occur as layers and lenses within the gabbros and are concentratedin the lower parts of the intrusion. Ore textures and associatedmineral assemblages indicate that the ore bodies formed by verylate-stage crystallization of V-rich titanomagnetite from animmiscible oxide liquid in a fluid-rich environment. The rocksof the Panzhihua intrusion become more evolved in chemistryupward and follow a tholeiitic differentiation trend with enrichmentin Fe, Ti, and V. They are enriched in light rare earth elementsrelative to heavy rare earth elements, and exhibit positiveNb, Ta, and Ti anomalies and negative Zr and Hf anomalies. Thesilicate rocks and oxide ores of the Panzhihua intrusion formedfrom highly evolved Fe–Ti–V-rich ferrobasaltic orferropicritic magmas. The textures of the ores and the abundanceof minor hydrous phases indicate that addition of fluids fromupper crustal wall-rocks induced the separation of the immiscibleoxide melts from which the Fe–Ti–V oxide ore bodiesin the lower part of the intrusion crystallized. KEY WORDS: magnetite; Fe–Ti-rich gabbro; layered intrusion; Panzhihua; SW China  相似文献   

11.
Mount Etna is composed for the most part of intermediate alkaline products, most of them porphyritic-the etnaïtes-, that may be defined as sodic trachybasalts or trachyandesites. The strato-volcanio itself overlies tholeiitic basalts (usually aphyric, except for olivine) belonging to three major types: olivine tholeiites (normative Ol+Hy; modal olivine and augite, titanomagnetite and ilmenite), pigeonite tholeiites (normative Hy+minor Ol or Qz; modal pigeonite and augite with minor olivine, ilmenite and titanomagnetite), transitional tholeiites, i.e. transitional between pigeonite tholeiites (aphyric) and alkali basaltic etnaïtes (porphyritic, with normative Ol+Ne or minor Hy; modal augite and olivine, titanomagnetite alone). An analcite basalt, chemically close to alkali basaltic etnaïtes, forms the small Cyclopean Islands, SE of Etna, and an alkali olivine basalt composes a neck at Paterno, SW foot of Etna.Both pigeonite tholeiites and alkali basaltic etnaïtes may be derived from a primitive olivine tholeiite magma by subtraction or addition of phases crystallized at moderate and low pressure (kaersutite±olivine, calcic plagioclase and clinopyroxene). The differentiation process implies crystal fractionation of the primitive olivine tholeiite magma at varying levels of the crust. The speed of ascent of the magma is thought to be the factor controlling the level at which differentiation may take place: in low velocity regimes, fractionation takes place at deeper levels of the crust. Slow ascent speeds would be the consequence of a developing crustal extension episode, induced by mantle diapirism that generated the olivine tholeiite magma below the Mount Etna area.  相似文献   

12.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

13.
A petrological and geochemical study of an olivine and of a clinipyroxene spinifex textured flow, from Alexo, indicates that the initial liquid in both flows probably came from the same mantle melting event and that the source was incompatible element depleted. The starting liquid of the clinopyroxene flow had experienced more olivine fractionation (10%) prior to its emplacement at Alexo, than the initial liquid of the olivine spinifex flow. The development of each of the textural and compositional zones in the flows can be modelled by means of crystal fractionation. In the case of the clinopyroxene flow the B-zone is formed by the fractionation of olivine, low-Ca pyroxene and chromite. An unusual feature of the Alexo clinopyroxene flow is presence of a peridotitic komatiite above the pyroxene cumulate layer, where a basaltic komatiite would usually be present. The presence of the peridotitic komatiite suggests an influx of new magma and hence a dynamic model for the flow. The composition of the clinopyroxene spinifex zone represents a mixture of clinopyroxene plus liquid, rather than simply a frozen liquid. This could happen if the clinopyroxene needles grew stalactitelike from the chilled upper surface of the flow into a flowing basaltic liquid. In the olivine spinifex flow the zones can be modelled as frozen liquids in the A2-zone, as initial liquid which has fractionated 30% olivine in the A3-zone and as liquid plus 50% olivine in the B-zone. But, if the clinopyroxene spinifex developed by stalactite growth of clinopyroxene needles into the a flowing liquid, the possibility that the olivine spinifex represent fractionated liquid plus stalactite olivines arises.  相似文献   

14.
The textural features and mineralogy of chrome-spinel bearing rocks from the layered ultrabasic intrusion of Rhum indicate that in situ reaction of chromite with olivine, plagioclase and interstitial liquid has taken place. The compositions of the chrome-spinels vary throughout parts of the intrusion and also in a systematic way across a thin picotite rich seam at a feldspar cumulate — olivine cumulate junction. The origin of the chrome-spinel is discussed in relation to other occurrences of chromite in layered ultrabasic rocks.  相似文献   

15.
The Hongge magmatic Fe-Ti-V oxide deposit in the Panxi region, SW China, is hosted in a layered mafic–ultramafic intrusion. This 2.7-km-thick, lopolith-like intrusion consists of the lower, middle, and upper zones, which are composed of olivine clinopyroxenite, clinopyroxenite, and gabbro, respectively. Abundant Fe-Ti oxide layers mainly occur in the middle zone and the lower part of the upper zone. Fe-Ti oxides include Cr-rich and Cr-poor titanomagnetite and granular ilmenite. Cr-rich titanomagnetite is commonly disseminated in the olivine clinopyroxenite of the lower parts of the lower and middle zones and contains 1.89 to 14.9 wt% Cr2O3 and 3.20 to 16.2 wt% TiO2, whereas Cr-poor titanomagnetite typically occurs as net-textured and massive ores in the upper middle and upper zones and contains much lower Cr2O3 (<0.4 wt%) but more variable TiO2 (0.11 to 18.2 wt%). Disseminated Cr-rich titanomagnetite in the ultramafic rocks is commonly enclosed in either olivine or clinopyroxene, whereas Cr-poor titanomangetite of the net-textured and massive ores is mainly interstitial to clinopyroxene and plagioclase. The lithology of the Hongge intrusion is consistent with multiple injections of magmas, the lower zone being derived from a single pulse of less differentiated ferrobasaltic magma and the middle and upper zones from multiple pulses of more differentiated magmas. Cr-rich titanomagnetite in the disseminated ores of the lower and middle zones is interpreted to represent an early crystallization phase whereas clusters of Cr-poor titanomagnetite, granular ilmenite, and apatite in the net-textured ores of the middle and upper zones are thought to have formed from an Fe-Ti-(P)-rich melt segregated from a differentiated ferrobasaltic magma as a result of liquid immiscibility. The dense Fe-Ti-(P)-rich melt percolated downward through the underlying silicate crystal mush to form net-textured and massive Fe-Ti oxide ores, whereas the coexisting Si-rich melt formed the overlying plagioclase-rich rocks in the intrusion.  相似文献   

16.
Petrology of the Upper Border Series of the Skaergaard Intrusion   总被引:3,自引:3,他引:3  
The Upper Border Series of the Skaergaard intrusion consistsof a 960 m thick sequence of rocks that crystallized againstthe roof of the magma chamber. The texture and composition ofthe unit vary systematically from top to bottom as a resultof changes that occurred in the magma during the solidificationof the intrusion. The order of crystallization of primocrystminerals in the Upper Border Series was: olivine; + plagioclase;+ apatite; + ilmenite; + magnetite; + Ca-rich pyroxene;—olivine;+ olivine; + ferrobustamite. The major silicate phases varyfrom high-temperature compositions to low-temperature compositionswith increasing distance from the upper contact. Post-crystallizationre-equilibration has affected the compositions of the oxideminerals and to a lesser extent the compositions of olivineand Ca-rich pyroxene. The Upper Border Series differentiationsequence differs from the Layered Series sequence, in that:(1) apatite appears much earlier; (2) magnetite precipitatedbefore Ca-rich pyroxene rather than after it; (3) orthopyroxeneis much less common; (4) the plagioclase is systematically poorerin K2O; and (5) the rocks are systematically richer in K2O andSiO2. The upper part of the Skaergaard magma appears to havebeen enriched in H2O, K2O, SiO2, and P2O5 relative to the partthat was parental to the Layered Series.  相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987113000303   总被引:4,自引:0,他引:4  
The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(<0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma.  相似文献   

18.
A Silurian/Ordovician extensional event in the southernmost sectors of the Central Iberian Zone is inferred from the Sm/Nd isochron obtained (436 ± 17 Ma) after the diabase sills from the La Codosera syncline. From the geochemical and mineralogical points of view, the diabase sills are subalkaline and range between high-Mg tholeiite diabases to tholeiite andesites. LREE enrichment, an Nb negative anomaly, the absence of a Ta trough and a high Nd isotope signature (εNdt = + 6) are the most relevant geochemical features. The diabase bodies are up to 330 m in thickness and were sampled from bottom to top along several different sections, permitting the definition of an accumulation of clinopyroxene, olivine and plagioclase close to chilled margins at the bottom, and abundant pegmatoid layers at the top. Chemical profiles and mass-balance modelling suggest that the bulk rock and chilled margin compositions are not dissimilar, defining an unusual S-type vertical compositional profile for large (> 50 m thick) sills, which in turn strongly suggests a single magma pulse and a probable gravitational settling. Assuming chilled margin samples as the parental magma, as well as Cr-enriched samples as cumulate layers, a two-stage liquid line of descent has been established, the first one consisting of a clinopyroxene-plagioclase-olivine cumulate assemblage. A second stage in relation to the depletion in Ti, Fe and V is accounted for by ilmenite fractionation, along with that of clinopyroxene, plagioclase and olivine fractionation. Thermobarometric estimations reveal that the clinopyroxene (around 1100 °C and 197 MPa) was a late mineral phase, whereas the plagioclase (around 1200 °C) was pre- to syn-emplacement, in agreement with the presence only of plagioclase phenocrysts in the chilled margins and the very abundant positive Eu anomaly. The energy constraint modelling is consistent with the lack of a significant assimilation process owing to the high temperature contrast between the country rock and the magma itself. The compositional characteristics of chilled margins enable them to be ruled out as primary melts in equilibrium with mantle olivine (Fo91), a certain amount of olivine fractionation being required, which might have occurred in magma conduits en route to shallow emplacement levels in the crust. Spinel lherzolitic xenoliths from the European Cenozoic alkaline magmatism appear to be unsuitable protoliths to account for the chilled margin compositions. Instead, a hybrid mantle source consisting of a small amount of OIB-mantle component (5 wt.%) and a depleted end-member mantle component seems to be a plausible protolith, resulting in a good fit with the fractionation-corrected chilled margin trends for 10% of partial melting.  相似文献   

19.
福建天马山—牛头山新生代玄武岩及其火山作用   总被引:4,自引:1,他引:4  
林友坤 《岩石学报》1992,8(4):376-385
  相似文献   

20.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号