共查询到20条相似文献,搜索用时 15 毫秒
1.
N. El-Jabi F. Ashkar S. Hebabi 《Stochastic Environmental Research and Risk Assessment (SERRA)》1998,12(1):65-82
This study uses the method of peaks over threshold (P.O.T.) to estimate the flood flow quantiles for a number of hydrometric
stations in the province of New Brunswick, Canada. The peak values exceeding the base level (threshold), or `exceedances',
are fitted by a generalized Pareto distribution. It is known that under the assumption of Poisson process arrival for flood
exceedances, the P.O.T. model leads to a generalized extreme value distribution (GEV) for yearly maximum discharge values.
The P.O.T. model can then be applied to calculate the quantiles X
T
corresponding to different return periods T, in years. A regionalization of floods in New Brunswick, which consists of dividing the province into `homogeneous regions',
is performed using the method of the `region of influence'. The 100-year flood is subsequently estimated using a regionally
estimated value of the shape parameter of the generalized Pareto distribution and a regression of the 100-year flood on the
drainage area. The jackknife sampling method is then used to contrast the regional results with the values estimated at site.
The variability of these results is presented in box-plot form.
Received: June 1, 1997 相似文献
2.
Trends in the timing and magnitude of floods in Canada 总被引:2,自引:0,他引:2
This study investigates trends in the timing and magnitude of seasonal maximum flood events across Canada. A new methodology for analyzing trends in the timing of flood events is developed that takes into account the directional character and multi-modality of flood occurrences. The methodology transforms the directional series of flood occurrences into new series by defining a new location of the origin. A test of flood seasonality (multi-modality) is then applied to identify dominant flood seasons. Floods from the dominant seasons are analyzed separately by a seasonal trend analysis. The Mann–Kendall test in conjunction with the method of pre-whitening is used in the trend analysis. Over 160 streamflow records from one common observation period are analyzed in watersheds with relatively pristine and stable land-use conditions. The results show weak signals of climate variability and/or change present in the timing of floods in Canada during the last three decades. Most of the significant trends in the timing of spring snowmelt floods are negative trends (earlier flood occurrence) found in the southern part of Canada. There are no significant trends identified in the timing of fall rainfall floods. However, the significance of the fall, rainfall-dominated flood season has been increasing in several analyzed watersheds. This may indicate increasing intensity of rainfall events during the recent years. Trends in the magnitude of floods are more pronounced than the trends in the timing of floods. Almost one fifth of all the analyzed stations show significant trends in the magnitude of snowmelt floods. Most of the significant trends are negative trends, suggesting decreasing magnitudes of snowmelt floods in Canada over the last three decades. Significant negative trends are found particularly in southern Ontario, northern Saskatchewan, Alberta and British Columbia. There are no significant trends in the magnitude of rainfall floods found in the analyzed streamflow records. The results support the outcomes of previous streamflow trend studies conducted in Canada. 相似文献
3.
During explosive eruptions the deposition of fine-grained volcanic ash fallout reduces soil permeability, favouring runoff
of meteoric water and thus increasing the occurrence of catastrophic floods. A fully dynamic, two-dimensional model was used
to simulate flooding scenarios in the Vesuvian area following an explosive volcanic eruption. The highest risk occurs in the
catchment area of the Acerra-Nola Plain N and NE of Vesuvius. This plain has a population of 70,000 living in low-lying areas.
This catchment area is vulnerable to ash fall because it lies downwind of the dominant synoptic circulation and it lacks a
natural outflow toward the sea. Our numerical simulations predict dangerous scenarios, even in quiescent periods, during extreme
rain events (return periods of 200 years have been considered), and a significant increase in the extent of the flooded areas
due to renewed volcanic activity. Based on these simulations a hazard zonation has been proposed.
Editorial responsibility: A Woods 相似文献
4.
River temperature models play an increasingly important role in the management of fisheries and aquatic resources. Among river temperature models, forecasting models remain relatively unused compared to water temperature simulation models. However, water temperature forecasting is extremely important for in-season management of fisheries, especially when short-term forecasts (a few days) are required. In this study, forecast and simulation models were applied to the Little Southwest Miramichi River (New Brunswick, Canada), where water temperatures can regularly exceed 25–29°C during summer, necessitating associated fisheries closures. Second- and third-order autoregressive models (AR2, AR3) were calibrated and validated using air temperature as the exogenous variable to predict minimum, mean and maximum daily water temperatures. These models were then used to predict river temperatures in forecast mode (1-, 2- and 3-day forecasts using real-time data) and in simulation mode (using only air temperature as input). The results showed that the models performed better when used to forecast rather than simulate water temperatures. The AR3 model slightly outperformed the AR2 in the forecasting mode, with root mean square errors (RMSE) generally between 0.87°C and 1.58°C. However, in the simulation mode, the AR2 slightly outperformed the AR3 model (1.25°C < RMSE < 1.90°C). One-day forecast models performed the best (RMSE ~ 1°C) and model performance decreased as time lag increased (RMSE close to 1.5°C after 3 days). The study showed that marked improvement in the modelling can be accomplished using forecasting models compared to water temperature simulations, especially for short-term forecasts.
EDITOR M.C. Acreman ASSOCIATE EDITOR S. Huang 相似文献
5.
Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical, and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers and river heat fluxes is essential for effective management of water and fisheries resources. This study dealt with the modelling of river water temperature using a deterministic model. This model calculated the different heat fluxes at the water surface and from the streambed using different hydrometeorological conditions. The water temperature model was applied on two watercourses of different sizes and thermal characteristics, but within a similar meteorological region, namely, the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). The model was also applied using microclimate data, i.e. meteorological conditions within the river environment (1–2 m above the water surface), for a better estimation of river heat fluxes. Water temperatures at different depths within the riverbed were also used to estimate the streambed heat fluxes. Results showed that microclimate data were essential to get accurate estimates of the surface heat fluxes. Results also showed that for larger river systems, the surface heat fluxes were generally the dominant component of the heat budget with a correspondingly smaller contribution from the streambed. As watercourses became smaller and groundwater contribution more significant, the streambed contribution became important. For instance, approximately 80% of the heat fluxes occurred at the surface for Catamaran Brook (20% from the streambed) whereas the Little Southwest Miramichi River showed values closer to 90% (10% from the streambed). As was reported in previous studies, the solar radiation input dominated the contribution to the heat gain at 63% for Catamaran Brook and 89% for Little Southwest Miramichi River. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
Abstract Statistical analysis of extremes is often used for predicting the higher return-period events. In this paper, the trimmed L-moments with one smallest value trimmed—TL-moments (1,0)—are introduced as an alternative way to estimate floods for high return periods. The TL-moments (1,0) have an ability to reduce the undesirable influence that a small value in the statistical sample might have on a large return period. The main objective of this study is to derive the TL-moments (1,0) for the generalized Pareto (GPA) distribution. The performance of the TL-moments (1,0) was compared with L-moments through Monte Carlo simulation based on the streamflow data of northern Peninsular Malaysia. The result shows that, for some cases, the use of TL-moments (1,0) is a better option as compared to L-moments in modelling those series. Citation Ahmad, U.N., Shabri, A. & Zakaria, Z.A. (2011) Trimmed L-moments (1,0) for the generalized Pareto distribution. Hydrol.Sci. J. 56(6), 1053–1060. 相似文献
7.
River water temperature is an important water quality parameter that also influences most aquatic life. Physical processes influencing water temperature in rivers are highly complex. This is especially true for the estimation of river heat exchange processes that are highly dependent on good estimates of radiation fluxes. Furthermore, very few studies were found within the stream temperature dynamic literature where the different radiation components have been measured and compared at the stream level (at microclimate conditions). Therefore, this study presents results on hydrometeorological conditions for a small tributary within Catamaran Brook (part of the Miramichi River system, New Brunswick, Canada) with the following specific objectives: (1) to compare between stream microclimate and remote meteorological conditions, (2) to compare measured long‐wave radiation data with those calculated from an analytical model, and (3), to calculate the corresponding river heat fluxes. The most salient findings of this study are (1) solar radiation and wind speed are parameters that are highly site specific within the river environment and play an important role in the estimation of river heat fluxes; (2) the incoming, outgoing, and net long‐wave radiation within the stream environment (under the forest canopy) can be effectively calculated using empirical formula; (3) at the study site more than 80% of the incoming long‐wave radiation was coming from the forest; (4) total energy gains were dominated by solar radiation flux (for all the study periods) followed by the net long‐wave radiation (during some periods) whereas energy losses were coming from both the net long‐wave radiation and evaporation. Conductive heat fluxes have a minor contribution from the overall heat budget (<3·5%); (5) the reflected short‐wave radiation at the water surface was calculated on average as 3·2%, which is consistent with literature values. Results of this study contribute towards a better understanding of river heat fluxes and water temperature models as well as for more effective aquatic resources and fisheries management. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
Water temperature influences most of the physical, chemical and biological properties of rivers. It plays an important role in the distribution of fish and the growth rates of many aquatic organisms. Therefore, a better understanding of the thermal regime of rivers is essential for the management of important fisheries resources. This study deals with the modelling of river water temperature using a new and simplified model based on the equilibrium temperature concept. The equilibrium temperature concept is an approach where the net heat flux at the water surface can be expressed by a simple equation with fewer meteorological parameters than required with traditional models. This new water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e., the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). A study of the long‐term thermal characteristics of these two rivers revealed that the greatest differences in water temperatures occurred during mid‐summer peak temperatures. Data from 1992 to 1994 were used for the model calibration, while data from 1995 to 1999 were used for the model validation. Results showed a slightly better agreement between observed and predicted water temperatures for Catamaran Brook during the calibration period, with a root‐mean‐square error (RMSE) of 1·10 °C (Nash coefficient, NTD = 0·95) compared to 1·45 °C for the Little Southwest Miramichi River (NTD = 0·94). During the validation period, RMSEs were calculated at 1·31 °C for Catamaran Brook and 1·55 °C for the Little Southwest Miramichi River. Poorer model performances were generally observed early in the season (e.g., spring) for both rivers due to the influence of snowmelt conditions, while late summer to autumn modelling performances showed better results. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
9.
A coupled deterministic hydrological and water temperature model, CEQUEAU, was modified to include soil temperature and crown closure in its calculation of local advective terms in the heat budget. The modified model was than tested to verify its sensitivity to these modifications. An analysis of the heat budget of a small forested catchment in eastern Canada revealed that the advective term related to interflow plays a significant role in the daily water heat budget, providing on average 28% of the local advective budget (which also includes advective heat terms from surface runoff and groundwater) and nearly 14% of the total heat budget (which includes all radiative terms at the water surface, convection and evaporation, as well as the local advective terms). Relative sensitivity indices (RSIs) were used to verify the impact of the newly introduced parameters and variables. Among them, parameters related to the forest cover (crown closure and leaf area index) have a maximum RSI of ?0·6; i.e. a 100% increase in value produces a 60% decrease in the local advective term. Parameters with the greatest influence are the volume of water contributing to interflow and the amplitude of the net radiative flux at the soil surface, which, if doubled, would double the contribution of the local interflow advective term to the heat budget. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
Wandering rivers are composed of individual anabranches surrounding semi‐permanent islands, linked by single channel reaches. Wandering rivers are important because they provide habitat complexity for aquatic organisms, including salmonids. An anabranch cycle model was developed from previous literature and field observations to illustrate how anabranches within the wandering pattern change from single to multiple channels and vice versa over a number of decades. The model was used to investigate the temporal dynamics of a wandering river through historical case studies and channel characteristics from field data. The wandering Renous River, New Brunswick, was mapped from aerial photographs (1945, 1965, 1983 and 1999) to determine river pattern statistics and for historical analysis of case studies. Five case studies consisting of a stable single channel, newly formed anabranches, anabranches gaining stability following creation, stable anabranches, and an abandoning anabranch were investigated in detail. Long profiles, hydraulic geometry, channel energy, grain size and sediment mobility variables were calculated for each channel. Within the Renous study area, the frequency of channel formation and abandonment were similar over the 54 years of analysis, indicating that the wandering pattern is being maintained. Eight anabranches were formed through avulsions, five were formed through the emergence of islands from channel bars and 11 anabranches were abandoned. The stable anabranch pair displayed similar hydraulic geometry and channel energy characteristics, while unstable anabranch pairs did not. The anabranch pair that gained stability displayed more similar channel energy characteristics than the anabranch pair that was losing stability (abandoning). It appears that anabranch pairs with similar energy characteristics are more stable than anabranches where these characteristics are out of balance. This is consistent with the hypothesis that anabranch pairs of similar length will be more stable than those with dissimilar lengths. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
Previous studies on heavy metal contamination of the Baie des Chaleurs focus only on industrial centers and overlooked the ecosystem as a whole. To fill this gap, the objective of this study is to establish a baseline of the spatio-temporal distribution of heavy metals in mussels from the Baie des Chaleurs based on the ecosystem approach. Our results show, for the first time, a cadmium contamination in mussels across the south coast of the Baie des Chaleurs and not only in industrial centers. Our results also confirm previous studies showing heavy metal contamination of the Belledune area. This study demonstrates that the use of the ecosystemic approach is essential to obtain a comprehensive picture of environmental contamination in marine ecosystems. 相似文献
12.
Daniel Caissie 《水文研究》2016,30(12):1872-1883
Stream temperature plays an important role in many biotic and abiotic processes, as it influences many physical, chemical and biological properties in rivers. As such, a good understanding of the thermal regime of rivers is essential for effective fisheries management and the protection aquatic habitats. Moreover, a thorough understanding of underlying physical processes and river heat fluxes is essential in the development of better and more adaptive water temperature models. Very few studies have measured river evaporation and condensation and subsequently calculated corresponding heat fluxes in small tributary streams, mainly because microclimate data (data collected within the stream environment) are essential and rarely available. As such, the present study will address these issues by measuring river evaporation and condensation in tributary 1 (Trib 1, a small tributary within Catamaran Brook) using floating minipans. The latent heat flux and other important fluxes were calculated. Results showed that evaporation was low within the small Trib 1 of Catamaran Brook, less than 0.07 mm day?1. Results showed that condensation played an important role in the latent heat flux. In fact, condensation was present during 34 of 92 days (37%) during the summer, which occurred when air temperature was greater than water temperature by 4–6 °C. Heat fluxes within this small stream showed that solar radiation dominated the heat gains and long‐wave radiation dominated the heat losses. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2015 John Wiley & Sons, Ltd. 相似文献
13.
极值理论在地震危险性分析中有着重要应用,发震震级超过某一阈值的超出量分布可以近似为广义帕累托分布.基于广义帕累托分布给出了若干地震活动性参数的估计公式,包括强震震级分布、地震复发周期和重现水平、期望重现震级、地震危险性概率和潜在震级上限等;以云南地区震级资料为基础数据,讨论了阈值选取、模型拟合诊断和参数估计;在此基础上计算了该地区的地震活动性参数.结果表明,广义帕累托分布较好地刻画了强震震级分布,通过超阈值(POT)模型计算的复发周期与实际复发间隔统计基本一致,高分位数估计在一定阈值范围内表现稳定,为工程抗震中潜在震级上限的确定提供了一种途径. 相似文献
14.
极值理论在地震危险性分析中有着重要应用, 发震震级超过某一阈值的超出量分布可以近似为广义帕累托分布. 基于广义帕累托分布给出了若干地震活动性参数的估计公式, 包括强震震级分布、 地震复发周期和重现水平、 期望重现震级、 地震危险性概率和潜在震级上限等; 以云南地区震级资料为基础数据, 讨论了阈值选取、 模型拟合诊断和参数估计; 在此基础上计算了该地区的地震活动性参数. 结果表明, 广义帕累托分布较好地刻画了强震震级分布, 通过超阈值(POT)模型计算的复发周期与实际复发间隔统计基本一致, 高分位数估计在一定阈值范围内表现稳定, 为工程抗震中潜在震级上限的确定提供了一种途径. 相似文献
15.
A study of channel changes in a reach of the North Nashwaaksis stream,New Brunswick,Canada 总被引:1,自引:0,他引:1
Dale I. Bray 《地球表面变化过程与地形》1987,12(2):151-165
Repeated surveys of a short channelized reach of the North Nashwaaksis Stream near Fredericton, N.B. over the period 1971-1981 provide the basis for evaluating the type and magnitude of some physical and botanical changes in the study reach. In 1967 a 200 m reach of the stream was shortened by about 10 per cent by cutting a new channel through a pasture. The original channel was protected by a dense growth of shrubs along its banks. The average width of the top of the channel in the channelized reach widened from 11 m to 17 m in response to a major flood in 1973. Rough estimates indicate that as much as 78 per cent of the published suspended-sediment load associated with the flood could reasonably have been derived from the banks in this short channelized reach. During the 1973 flood, a mid-channel bar was formed in the portion of the channel which experienced the most widening. Subsequent to the flood, the mid-channel bar was first colonized by sedges, and then by alders. By 1981, the width of the low flow channel in the channelized reach was about the same as that for the unmodified upstream reaches. This case study provides useful information for those planning channelization projects on small to intermediate size streams in humid temperate areas. 相似文献
16.
Qi Yang Zhengyong Zhao Thien Lien Chow Herb W. Rees Charles P.‐A. Bourque Fan‐Rui Meng 《水文研究》2009,23(23):3271-3280
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
M. A. J. van Montfort A. Otten 《Stochastic Environmental Research and Risk Assessment (SERRA)》1991,5(1):69-76
In the peak over threshold model resulting in the Extreme-value distribution, type I, (EV1) the firste of the distribution function is based on the Poisson number of exceedances, and the seconde arises from the Exponentially distributed magnitudes.This paper, on the one hand, generalises the Poisson model to the (positive and negative) Binomial distribution, and, on the other hand, the Exponential distribution is generalised to the Generalised Pareto distribution. Lack of fit with respect to the Poisson and Exponential distribution is measured by statistics derived from those which would be locally most powerful if the estimates of the location and scale parameter were equal to the true parameter values. Ways of combining both statistics are discussed. 相似文献
18.
19.
The pristine Okavango Delta wetland of northern Botswana is potentially under threat due to water abstraction from its tributaries. We have developed a statistical model which makes it possible to predict the extent of wetland loss which will arise from water abstraction. The model also permits prediction of the maximum area of flooding, and its spatial distribution, three months in advance of the flood maximum. The model was calibrated using maximum areas of seasonal inundation extracted from satellite imagery covering the period 1985–2000, which were correlated with rainfall and total flood discharge. A technique was developed to translate the modelled flood area into a flood map. The methodology can predict maximum area of flooding and its distribution with better than 90% accuracy. An important, although relatively minor, source of error in the spatial distribution of the flood arises from a secular change in flood distribution in the distal Delta which has taken place over the last 15 years. Reconstruction of flooding history back to 1934 suggests that the Delta may be subject to a quasi 80 year climatic oscillation. If this oscillation continues, the extent of flooding will increase in the coming decades. 相似文献
20.
Vegetation turnover in a braided river: frequency and effectiveness of floods of different magnitude 下载免费PDF全文
Nicola Surian Matteo Barban Luca Ziliani Giovanni Monegato Walter Bertoldi Francesco Comiti 《地球表面变化过程与地形》2015,40(4):542-558
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献