首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kotov  V. A.  Haneychuk  V. I.  Tsap  T. T.  Hoeksema  J. T. 《Solar physics》1997,176(1):45-57
The CrAO-WSO-network experiment was designed for detection of low-degree oscillations of the Sun representing either its normal g -modes or those driven by, e.g., rapid (hypothetical) rotation of the central solar core. The Doppler-shift measurements were made in 1974–1995 at both sites during about 13600 hr, in all. Taking into account the upper limit (0.08 m s-1) for amplitudes of potential g-modes, attention is paid to the Sun's behaviour at frequencies near the 9th daily harmonic (period P 160.The two main issues follow from analysis of the combined CrAO-WSO data: (a) in 1974–1982 the primary period of solar pulsation was P 0160.0099 ± 0.0016 ± 0.0016 min, but (b) during the last 13 yr it attained a new value, P 1 159.9654 ± 0.0010 min, which happens to be a near-annual sidelobe of P 0. We find therefore that the phase stability of the 160-min mode is no longer present: it appears to be splitted at least into a pair of oscillations,P 0 and P 1, having perhaps different physical origins. But the most striking is the fair coincidence of the strongest peaks in the two data sets: CrAO (1974–1995): P = 159.9662 ±0.0006 min, WSO (1977–1994): P = 159.9663 ± 0.0007 min. The existence of two frequencies,P -1 0 and P -1 1, with their separation corresponding to 1-yr period, seems to be difficult to explain in terms of gravity g modes.  相似文献   

2.
Systematic measurements of the differential Doppler velocity of the Sun have been performed in Crimea from 1974 through 1988 (total 987 days, 6197 hours of observations). They confirm the presence of a long-term phase-coherent solar pulsation with a period of 160.010 min. On the other hand, the analysis of new data suggests that solar 160 min pulsation might, in frequency, have a multiplet fine structure. In particular, large changes of amplitude and phase of the pulsation over the years 1982–1986 may indicate that during the last few years we have been observing the solar 160 min oscillation of the second portion of the 22 year solar cycle.It is further noted that the beat period of the two closely spaced frequencies (periods are 160.0101 and 160.0126 min) equals 19.5 ± 1.1 year, which is in good agreement with the average length of the solar magnetic activity cycle, 20–22 years. Being verified, this unpredicted property of the pulsation can offer a novel possibility for probing the Sun's interior and perhaps for the study of the internal rotation and 11(22) year cycle of a star.  相似文献   

3.
R. H. Dicke 《Solar physics》1988,115(1):171-181
It has previously been shown that the statistics of the phase fluctuation of the sunspot cycle are compatible with the assumption that the solar magnetic field is generated deep in the Sun by a frequency stable oscillator and that the observed substantial phase fluctuation in the sunspot cycle is due to variation in the time required for the magnetic field to move to the solar surface (Dicke, 1978, 1979). It was shown that the observed phase shifts are strongly correlated with the amplitude of the solar cycle. It is shown here that of two empirical models for the transport of magnetic flux to the surface, the best fit to the data is obtained with a model for which the magnetic flux is carried to the surface by convection with the convection velocity proportional to a function of the solar cycle amplitude. The best fit of this model to the data is obtained for a 12-yr transit time. The period obtained for the solar cycle is T = 22.219 ± 0.032 yr. It is shown that the great solar anomaly of 1760–1800 is most likely real and not due to poor data.  相似文献   

4.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

5.
The analysis of the daily measurements of the coronal green line intensity, which have been extensively tested for homogeneity and freedom of trends observed at the Pic-du-Midi observatory during the period 1944–1974, has revealed some characteristic asymmetric variations. A north-south asymmetry of the green line intensity is the main feature of the period 1949–1971 while a south-north one is obvious within 1972–1974 and the minor statistical significance span 1944–1948. On the other hand a significant W-E asymmetry has been confirmed in the whole period 1944–1974. It is noteworthy that the period 1949–1971, where the N-S asymmetry takes place consists a 22-yr solar cycle which starts from the epoch of the solar magnetic field inversion of the solar cycle No. 18 and terminates in the relevant epoch of the cycle No. 20.The combination of N-S and S-N asymmetry with a W-E one makes the NW solar-quarter to appear as the most active of all in the 22-yr cycle 1949–1971, while in the periods 1944–1948 and 1972–1974 the SW quarter is the most active. Finally, from the polar distribution of the green line intensity has been derived that the maximum values of the asymmetries occur in heliocentric sectors ± 10°–20° far from the solar equator on both sides of the central meridian.Physical mechanisms which could contribute to the creation of both N-S and E-W asymmetries of the solar activity and the green line intensity as an accompanied event, like different starting time of an 11-yr solar cycle in the two solar hemispheres, the motion of the Sun towards the Apex, and short-lived active solar longitudes formed by temporal clustering of solar active centers, have been discussed.  相似文献   

6.
El-Borie  M.A. 《Solar physics》2002,208(2):345-358
The ultra-low frequency power spectra (from 1 nHz to 10 Hz) for the solar wind ion density (N) and speed (SWS) measurements taken near 1 AU, have been examined during the period 1973–2000. Although the spectrum shows remarkable peaks at the wavelengths 0.5, 0.7, 1.0, 1.3 years, additional significant peaks of 2.6 yr and 5.6 yr for N and 9.6 yr for SWS are also found. Possible causes are discussed. The 9.6-yr period is not related to the period of the solar activity cycle, but there is some indication of an association with the coronal hole variations in the southern hemisphere of the Sun. The averages of solar wind ion density showed a periodic variation with three nearly equal peaks at intervals of 5.1±0.2 yr. The long-term enhancements in SWS reflect nearly stable variations and a continuously-existing feature in the heliosphere. The observed long periodicities in both N and SWS spectra may be strongly related to, or organized by, the observed variations in the coronal hole areas between northern and southern hemispheres of the Sun. The timing of the maximum peaks in solar ion densities and speeds spectrum is predicted.  相似文献   

7.
Erofeev  D.V.  Erofeeva  A.V. 《Solar physics》2000,191(2):281-292
We investigate a latitude–time distribution of polar faculae observed at Ussuriysk Observatory in years 1966–1986. The distribution is compared with the longitude-averaged (zonal) magnetic field of the Sun calculated from the data obtained at Mount Wilson Observatory in the years 1966–1976, and at Kitt Peak National Observatory during the period from 1976 to 1985. We found that slow, poleward-directed migration of the polar faculae zones occurring during the course of the solar cycle is not a continuous process, but it contains several episodes of appearance and fast poleward drift of new zones of polar faculae. At the rising phase of the solar cycle, new zones of polar faculae appear at latitudes as low as 40°, but the ones observed during the declining phase of the solar cycle originate at higher latitudes of 50–55°. Such episodes of appearance and fast migration of the polar faculae zones are associated with the poleward-directed streams of magnetic field originated at low latitudes. Moreover, we found some evidence for existence of an additional component of the polar faculae activity that reveals an equatorward migration during the course of the solar cycle. We also investigated a relationship between the number of polar faculae, n, and absolute magnetic flux z of the zonal mode of the solar magnetic field. We found that within the polar zones of the Sun, substantial correlation between temporal variations of n and z takes place both on the time scale of the solar cycle and on a shorter time scale of 2–4 years. The relationship between the number of polar faculae and magnetic flux may be approximated by a linear dependence n=0.12z (where z is expressed in 1021 Mx), except for time interval 1977 through 1980 for which the factor of proportionality is found to have a systematically larger value of 0.20.  相似文献   

8.
Magnetically closed regions in the solar wind   总被引:1,自引:0,他引:1  
Interplanetary plasma and magnetic field data collected by Helios-1, Helios-2 and IMP-8 satellites over the periods December 1974–December 1976, January 1976–December 1976 and December 1974–December 1976, respectively, are analysed. From this analysis, we identified 85 about cases in which the proton temperature was very low. In 50 of these cases, the interplanetary magnetic field showed characteristic variations favorable for closed structures in the solar wind.By using the calculated radial temperature gradients as a function of the solar wind speed and the heliocentric distance we were able to identify cold protons in the neighborhood of the Sun (0.3 AU).The estimation of the distance at which regions of cold protons are formed (10R ) shows that this distance is the same whether we are using solar wind plasma data measured in fixed or in varied heliocentric distances.  相似文献   

9.
The Zürich sunspot relative number R z series has been analysed by the cyclogram method. The amplitude and the frequency variations of the Fourier 11 yr component between 1700–1983 A.D., were determined in a continuous way.Four distinct time intervals with significantly different characteristics of the periodicities are observed and discussed.Their second harmonics are also considered. The periodicity changes are contemporary to those of the 11 yr cycles.Around the year 1903 it seems that an important event has happened in the Sun. In fact the 11.4 yr cycle periodicity, that was very stable since at least 1825 started to change gradually to smaller values and similarly it happened to the second harmonic which also stopped and abruptly changed of phase of 90°.  相似文献   

10.
Lotova  N.A.  Obridko  V.N.  Vladimirskii  K.V.  Bird  M.K.  Pätzold  M.  Sieber  W.  Güsten  R.  Korelov  O.A. 《Solar physics》1999,189(2):387-398
Long-term scintillation measurements of the solar wind formation zone at solar elongations ranging from 1°–8° (Sun impact parameters: 4–30 R ) were recorded using the water maser source IRC-20431 at the wavelength =1.35 cm during its annual solar occultations in December 1981–1998. Dramatic changes in the spatial dependence of the scintillation index were recorded over the course of the 11-year solar cycle. Markedly diminished scattering, attributed to a pronounced heliolatitude effect, was observed at the closest solar approach distances in the years around solar activity minimum. From parallel investigations of the solar magnetic field structure it was determined that the field strength at the source of the solar wind streamlines is the governing factor for the solar wind acceleration process. Particularly apparent in the scintillation data during solar activity minimum is the increasing role of the polar coronal holes with their associated open magnetic field structure. The dependence of the solar scattering intensity on heliolatitude fades in the years of high solar activity as the level of scintillations increases at polar latitudes.  相似文献   

11.
Coronal Faraday rotation of the linearly polarized carrier signals of the HELIOS spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3–10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975–1976 was found to decrease with radial distance according to r , where = 2.7 ± 0.2. The mean field magnitude was 1.0 ± 0.5 × 10 –5 tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.  相似文献   

12.
Doppler measurements of the photosphere of the entire Sun carried out at the Crimean Astrophysical Observatory (CrAO) in 1974–2007 by the differential technique showed the presence of an enigmatic periodicity of P 1 = 159.967(4) min. The phase of this oscillation was constant over the entire 34-year of surveys and interval. The true nature of this phenomenon is unknown. Pulsation with the former period P 0 = 160.0101(15) min has been reliably detected only in the first nine years, from 1974 to 1982. It is noted that (a) the average amplitude of the P 1 oscillation in the first half of the data was nearly 34% higher than in the second half and (b) the beat period of 400(14) d of these two pulsations is equal within error to the Jovian synodic period (399 d). A hypothesis is discussed relating the P 1 oscillation to the superfast rotation of the inner solar core.  相似文献   

13.
The 1968–2000 data on the mean magnetic field (MMF, longitudinal component) of the Sun are analysed to study long-time trends of the Sun's magnetic field and to check MMF calibration. It is found that, within the error limits, the mean intensity of photospheric magnetic field (the MMF strength, |H|), did not change over the last 33 years. It clearly shows, however, the presence of an 11-year periodicity caused by the solar activity cycle. Time variations of |H| correlate well with those of the radial component, |B r|, of the interplanetary magnetic field (IMF). This correlation (r=0.69) appears to be significantly higher than that between |B r| and the results of a potential source-surface extrapolation, to the Earth's orbit, of synoptic magnetic charts of the photosphere (using the so-called `saturation' factor –1 for magnetograph measurements performed in the line Fei 525.0 nm; Wang and Sheeley, 1995). It seems therefore that the true source surface of IMF is the `quiet' photosphere – background fields and coronal holes, like those for MMF. The average `effective' magnetic strength of the photospheric field is determined to be about 1.9 G. It is also shown that there is an approximate linear relation between |B r| and MMF intensity |H| (in gauss)|B r|(H 0)min×(1+C|H|)where =1.5×10–5 normalizes the photospheric field strength to 1 AU distance from the Sun, (H 0)min=1.2 G is some minimal `effective' intensity of photospheric background fields and C=1.3 G–1 an empirical constant. It is noted that good correlation between time variations of |H| and |B r| makes suspicious a correction of the photospheric magnetic fields with the use of saturation factor –1.  相似文献   

14.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

15.
Using Greenwich data on sunspot groups during 1874–1976, we have studied the temporal variations in the differential rotation parametersA andB by determining their values during moving time intervals of lengths 1–5 yr successively displaced by 1 yr. FFT analysis of the temporal variations ofB (orB/A) shows periodicities 18.3 ± 3 yr, 8.5 ± 1 yr, 3.9 ± 0.5 yr, 3.1 ± 0.2 yr, and 2.6 ± 0.2 yr at levels 2. This analysis also shows five more periodicities at levels 1–2. The maximum entropy method is used to set narrower limits on the values of these periods. The reality of the existence of all these periodicities ofB (orB/A ) except the one at 2.8 yr is confirmed by analyzing the simulated time series ofB andB/A with values ofA andB randomly distributed within the limits of their respective uncertainties. Four of the prominent periods ofB agree, within their uncertainties, with the known periods in the the large-scale photospheric magnetic field. The deviations from the average differential rotation are larger near the sunspot minima. On longer time scales, the variations in the amount of sunspot activity per unit time are well correlated to the variations in the amplitudes of the torsional oscillation represented by the 22-yr periodicity inB. All the periods inB found here are in good agreement with the synodic periods of two or more consecutive planets. The possibility of planetary configurations providing perturbations needed for the Sun's MHD torsional oscillations is speculated upon and briefly discussed.  相似文献   

16.
The recent measurements made by satellites of the aurorae in connection with solar phenomena have increased interest in auroral research. In the present investigation, we establish that, for the 20th solar cycle, the occurrence of visual discrete aurorae A, deduced from a complete set of data, is significantly related to the sunspot numbers R z, the number of flares F (of importance 1) the solar wind streams derived from solar coronal holes H, and the geomagnetic index A p.By employing the theory of residues it has been found that A correlates significantly well with the above indices. Accuracies of the order of 75–94% were found for geomagnetic latitudes in the range of 54 –63 N.The A-R zrelationship was investigated in particular for the period 1897–1951. For this period spectrum analysis of A annual values revealed the existence of 3–4 yr and 8–10 yr periodicities of significances 95% and 99%; respectively.Research Associate.  相似文献   

17.
We examine the deviation of the solar diurnal anisotropy vector from the 18 LT direction during the positive state of the solar cycle by assuming two anisotropies in free space. We use two detectors characterized by two linearly independent coupling functions. The median primary rigidity of response of these detectors covers the range 16 GV R m 331 GV. Amplitude, direction, spectrum exponent, and the upper cut-off rigidity of each anisotropy have been calculated using the least-squares method over the time interval 1968–1988. This period covers a complete solar magnetic cycle. Only one anisotropy is dominant during each magnetic state of the solar cycle. The upper cut-off rigidity at which the dominant anisotropy vanishes varies between 50–250 GV. The direction of the dominant anisotropy vector points toward the 18 LT direction during the negative state of the solar cycle and toward earlier hours than 18 LT during the positive state. The non-dominant anisotropy is characterized by very high upper cut-off rigidity and sharper energy spectral.  相似文献   

18.
We observed Faraday rotation of linearly polarized radio waves from the Crab Nebula (Tau A) at 4170 MHz during solar coronal occultations in June 1971–75. Mean amplitudes of the variations of position angle are larger in an active phase of the solar cycle than in a quiet phase. In occultations in 1971 and 1973, the position angle of the polarization varied oscillatory by 20–50 degrees due to local magnetic structures in the corona with a typical scale-length of about 0.5 R . In 1974, we observed a typical variation of position angle of polarization which is expected from a Y-shaped field configuration in coronal streamers.The Faraday rotation is enhanced when the line of sight to Tau A passes through strong coronal magnetic fields computed from magnetograph observations, while the rotation is suppressed when the line of sight passes through large coronal holes observed in X-rays. Short-time oscillation of the rotation angle observed in 1971 and 1973 suggests that neutral sheets in coronal streamers oscillate at a period of 3 hours with an amplitude of 1 R at a distance of 10 R from the Sun.  相似文献   

19.
In this paper we present a general framework for forecasting the smoothed maximum level of solar activity in a given cycle, based on a simple understanding of the solar dynamo. This type of forecasting requires knowledge of the Sun's polar magnetic field strength at the preceeding activity minimum. Because direct measurements of this quantity are difficult to obtain, we evaluate the quality of a number of proxy indicators already used by other authors which are physically related to the Sun's polar field. We subject these indicators to a rigorous statistical analysis, and specify in detail the analysis technique for each indicator in order to simplify and systematize reanalysis for future use. We find that several of these proxies are in fact poorly correlated or uncorrelated with solar activity, and thus are of little value for predicting activity maxima.We also present a scheme in which the predictions of the individual proxies are combined via an appropriately weighted mean to produce a compound prediction. We then apply the scheme to the current cycle 22, and estimate a maximum smoothed International sunspot number of 171 ± 26, which can be expressed alternatively as a smoothed 2800 MHz radio flux (F 10.7) of 211 ± 23 × (10–22 Wm–2Hz–1), or as a smoothed sunspot area of 2660 ± 430 millionths of a solar disk. Once the actual maximum for cycle 22 has been established, we will have both additional statistics for all the proxy indicators, and a clearer indication of how accurately the present scheme can predict solar activity levels.  相似文献   

20.
We analyzed 689 high-resolution magnetograms taken daily with the NSO Vacuum Telescope on Kitt Peak from 1975 to 1991. Motions in longitude on the solar surface are determined by a one-dimensional crosscorrelation analysis of consecutive day pairs. The main sidereal rotation rate of small magnetic features is best fit by = 2.913(±0.004) – 0.405(±0.027) sin2 – 0.422(±0.030) sin4 , in µrad s–1, where is the latitude. Small features and the large-scale field pattern show the same general cycle dependence; both show a torsional oscillation pattern. Alternating bands of faster and slower rotation travel from higher latitudes toward the equator during the solar cycle in such a way that the faster bands reach the equator at cycle minimum. For the magnetic field pattern, the slower bands coincide with larger widths of the crosscorrelations (corresponding to larger features) and also with zones of enhanced magnetic flux. Active regions thus rotate slower than small magnetic features. This magnetic torsional oscillation resembles the pattern derived from Doppler measurements, but its velocities are larger by a factor of more than 1.5, it lies closer to the equator, and it leads the Doppler pattern by about two years. These differences could be due to different depths at which the different torsional oscillation indicators are rooted.Operated by the Association of Universities for Research in Astronomy Inc. under cooperative agreement with the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号