首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal and petrologic models of the crust and upper mantle are used for calculating effective viscosities on the basis of constant creep rates. Viscosity—depth models together with pressure—depth models are calculated for continental and oceanic blocks facing each other at continental margins. It is found from these “static models” that the overburden pressure in the lower crust and uppermost mantle causes a stress which is directed from the ocean to the continent. The generally low viscosity of 1020–1023 poise in this region should permit a creep process which could finally lead to a “silent” subduction. In the upper crust static stresses act in the opposite direction, i.e. from the continent to the ocean, favouring tension which could produce normal faulting in the continent. Differences between observations and the results obtained from the static models are attributed to dynamical forces.  相似文献   

2.
Collection of seismic reflection data from continental margins and ocean basins surrounding North America makes it possible to estimate the amount of material eroded from the area formerly covered by Laurentide ice sheets since major glaciation began in North America. A minimum estimate is made of 1.62 × 106 km3, or an average 120 m of rock physically eroded from the Laurentide region. This figure is an order of magnitude higher than earlier estimates based on the volume of glacial drift, Cenozoic marine sediments, and modern sediment loads of rivers. Most of the sediment produced during Laurentide glaciation has already been transported to the oceans. The importance of continental glaciation as a geomorphic agency in North America may have to be reevaluated. Evidence from sedimentation rates in ocean basins surrounding Greenland and Antarctica suggests that sediment production, sediment transport, and possibly denudation by permanent ice caps may be substantially lower than by periodic ice caps, such as the Laurentide. Low rates of sediment survival from the time of the Permo-Carboniferous and Precambrian glaciations suggest that predominance of marine deposition during some glacial epochs results in shorter lived sediment because of preferential tectonism and cycling of oceanic crust versus continental crust.  相似文献   

3.
Stresses and effective viscosities in the asthenosphere to a depth of 400 km are calculated on the basis of Weertmans “temperature method” i.e., on relating viscosity to the ratio of the temperature to the melting point (=homologous temperature). Some oceanic and continental geotherms and two melting point—depth curves, the dry pyrolite solidus and the forsterite90 melting curve are used for the conversion of the homologous temperature to the effective viscosity. Two creep laws are considered, the linear, grain-size-dependent Nabarro—Herring (NH) creep law, and a power creep law, in which the creep rate is proportional to the third power of the stress. A plate tectonic model yields creep rates of 2 · 10−14 s−1 for the oceanic and 3 · 10−15 s−1 for the continental asthenosphere. These values are held constant for the calculations and may be valid for regions inside plates.The dry pyrolite mantle model results in high homologous temperatures in the asthenosphere below oceans (0.9), very low stresses (a few bars and lower) and shows a low viscosity “layer” of about 200-km thickness. Below continental shields the homologous temperature has a maximum value of 0.73, stresses are around 5–20 bar and the low-viscosity region is thicker and less pronounced than in the oceanic case. The Fo90 mantle model generally gives lower homologous temperatures (maximum value below oceans beside active ridges 0.75). The stresses in the asthenosphere beneath oceans vary from a few bars to about 50 bar and below continents to about 100 bar. The low-viscosity region seems to reach great depths without forming a “channel”. The Figs. 1 and 2 show the approximate viscosity—depth distribution for the two mantle models under study.Assuming a completely dry mantle and a mean grain size of 5 mm, power law creep will be the dominating creep process in the asthenosphere. However, grains may grow in a high-temperature—low-stress regime (i.e., below younger oceans), an effect which will further diminish the influence of NH creep. In the upper 100–150 km of the earth some fluid phases may affect considerably creep processes.  相似文献   

4.
A vertically integrated ice-flow model suitable for use in climate studies is formulated. Large continental ice sheets may be characterized by two fundamental quantities: the height-to-width ratio, and the steepness of the edge. So it is natural to develop a model containing two parameters that can be chosen to give the right values of those characteristic quantities. The result is a model that is close to M. A. W. Mahaffy's (Journal of Geophysical Research, 81, 1059–1066 (1976)). The model is used to study glaciation in Europe. Dropping the level of zero mass balance creates small stable ice caps in the Alps and the Scandinavian mountains. If the drop exceeds 600 m (with respect to present-day conditions), the feedback between ice-sheet height and mass balance becomes dominating and the Fennoscandian Ice Sheet keeps growing. It does not reach an equilibrium state within 60,000 yr. An experiment simulating rapid onset of a glacial cycle shows that the growth of ice volume in Europe is smaller than that in northern America (J. T. Andrews and M. A. W. Mahaffy, Quaternary Research, 6, 167–183 (1976)). After 10,000 yr, the volume of the Fennoscandian Ice Sheet (2 × 1015 m3) is about half the volume of the Laurentide Ice Sheet. This leaves the “observed” sea-level lowering in the period 125,000–115,000 yr B.P. (estimates center around 50 m) unexplained.  相似文献   

5.
The history of the recording and interpretation of the Fennoscandian uplift illustrates the main history of Earth sciences because the results obtained had (and still have) immediate impact of the interpretation of a large number of fundamental problems in Earth sciences. Thanks to a paper of De Geer in 1888, the glacial isostatic origin was established. Fennoscandia became the classic area of glacial isostasy, and its sea level records were used for geophysical calculations of the properties and dynamics of the mantle and crust. The varve dated sea level curve of Lidén (1938) from the center of uplift provided an exceptionally well dated record. With the radiocarbon method, the records of shorelines and shorelevel displacement curves were drastically improved providing a totally new basis for the understanding of the geodynamics of the Fennoscandian uplift and for the geophysical interpretation of the data obtained. This is especially true in combination with the repeated levelling data obtained during the last decades for Finland and Sweden.The Late Cenozoic long term movements of the Fennoscandian Shield are characterized by a considerable subsidence. The postglacial uplift of Fennoscandia is complex (an exponential and a linear factor) and caused by two different mechanisms. The total absolute movement in relation to the last glaciation is an elliptic uplift cone of 830 m height surrounded by a subsidence through of 170 m height. The mass in the uplift cone and in the subsidence through is as 1:1 with a volume 0.7 × 106km3. The disappearence/appearance of mass give evidence of a mass transfer in a low viscosity asthenosphere. The properties and conditions of the asthenosphere are found to be: 1–10 × 1020 Poises in viscosity, 3 × 10–14 – 3 × 10–16 sec–1 in strain rates, 0.7% of the melting temperature, 3 mm in grain size, and 5–0.4 bar in stress. The main isostatic uplift (the exponential factor) originates from an asthenospheric dislocation glide process which in early-mid Holocene time changed over into a diffusion creep process. The present linear uplift factor (identified through the last 8000 yrs) seems to originate from mesospheric motions under the following approximate conditions: 0.6% of the melting temperature, 2 × 1022 Poises in viscosity, 3 × 10–16 sec–1 in strain rates and 8 bars in stress. Uplift irregularities and neotectonism are frequently established and often reveal an old geodynamic inheritance (e.g. the Pre-Baikalian/Gothian bedrock seam of high geodynamic activity). The peak rates of glacial isostasy are associated with intensive fracturing, faulting and seismic activity.  相似文献   

6.
Continental recycling and true continental growth   总被引:1,自引:0,他引:1  
Continental crust is very important for evolution of life because most bioessential elements are supplied from continent to ocean. In addition, the distribution of continent affects climate because continents have much higher albedo than ocean, equivalent to cloud. Conventional views suggest that continental crust is gradually growing through the geologic time and that most continental crust was formed in the Phanerozoic and late Proterozoic. However, the thermal evolution of the Earth implies that much amounts of continental crust should be formed in the early Earth. This is “Continental crust paradox”.Continental crust comprises granitoid, accretionary complex, and sedimentary and metamorphic rocks. The latter three components originate from erosion of continental crust because the accretionary and metamorphic complexes mainly consist of clastic materials. Granitoid has two components: a juvenile component through slab-melting and a recycling component by remelting of continental materials. Namely, only the juvenile component contributes to net continental growth. The remains originate from recycling of continental crust. Continental recycling has three components: intracrustal recycling, crustal reworking, and crust–mantle recycling, respectively. The estimate of continental growth is highly varied. Thermal history implied the rapid growth in the early Earth, whereas the present distribution of continental crust suggests the slow growth. The former regards continental recycling as important whereas the latter regarded as insignificant, suggesting that the variation of estimate for the continental growth is due to involvement of continental recycling.We estimated erosion rate of continental crust and calculated secular changes of continental formation and destruction to fit four conditions: present distribution of continental crust (no continental recycling), geochronology of zircons (intracontinental recycling), Hf isotope ratios of zircons (crustal reworking) and secular change of mantle temperature. The calculation suggests some important insights. (1) The distribution of continental crust around at 2.7 Ga is equivalent to the modern amounts. (2) Especially, the distribution of continental crust from 2.7 to 1.6 Ga was much larger than at present, and the sizes of the total continental crust around 2.4, 1.7, and 0.8 Ga became maximum. The distribution of continental crust has been decreasing since then. More amounts of continental crust were formed at higher mantle temperatures at 2.7, 1.9, and 0.9 Ga, and more amounts were destructed after then. As a result, the mantle overturns led to both the abrupt continental formation and destruction, and extinguished older continental crust. The timing of large distribution of continental crust apparently corresponds to the timing of icehouse periods in Precambrian.  相似文献   

7.
日本的综合大洋钻探计划(IODP)   总被引:2,自引:1,他引:1  
对日本的IODP活动以及科学目标进行简要介绍。IODP核心技术支撑之一的立管钻探船“地球号”可在水深4 000 m的海底钻进7 000 m,钻达发震带和上地幔,实现日本的IODP科学目标。日本的IODP科学规划主要有三大科学主题和八项研究目标,三大科学主题包括地幔过程和地球系统演化,地壳作用过程和地球系统演化,俯冲带和地球系统演化过程中的动力学及物质循环。其八项研究目标为:①钻探西太平洋洋底高原,认识核—幔作用过程;②钻探太平洋白垩纪—新生代沉积物,详细研究地球温室期间的物质循环及从温室环境到冰室环境的转化过程;③钻探大洋岛弧,认识大陆地壳形成过程;④钻探扩张的弧后,认识洋壳岩石圈形成过程;⑤钻探亚洲边缘海及陆坡,认识陆壳—洋壳—大气圈关系;⑥调查增生楔中的碳循环及深部生物圈;⑦调查汇聚板块边缘大地震周期及形成机制、构造及物质循环;⑧研究生活于增生楔环境中极端微生物生物学。  相似文献   

8.
The event across the Paleozoic–Mesozoic transition involved the greatest mass extinction in history together with other unique geologic phenomena of global context, such as the onset of Pangean rifting and the development of superanoxia. The detailed stratigraphic analyses on the Permo-Triassic sedimentary rocks documented a two-stepped nature both of the extinction and relevant global environmental changes at the Guadalupian–Lopingian (Middle and Upper Permian) boundary (G-LB, ca. 260 Ma) and at the Permo-Triassic boundary (P-TB, ca. 252 Ma), suggesting two independent triggers for the global catastrophe. Despite the entire loss of the Permian–Triassic ocean floors by successive subduction, some fragments of mid-oceanic rocks were accreted to and preserved along active continental margins. These provide particularly important dataset for deciphering the Permo-Triassic paleo-environments of the extensive superocean Panthalassa that occupied nearly two thirds of the Earth’s surface. The accreted deep-sea pelagic cherts recorded the double-phased remarkable faunal reorganization in radiolarians (major marine plankton in the Paleozoic) both across the G-LB and the P-TB, and the prolonged deep-sea anoxia (superanoxia) from the Late Permian to early Middle Triassic with a peak around the P-TB. In contrast, the accreted mid-oceanic paleo-atoll carbonates deposited on seamounts recorded clear double-phased changes of fusuline (representative Late Paleozoic shallow marine benthos) diversity and of negative shift of stable carbon isotope ratio at the G-LB and the P-TB, in addition to the Paleozoic minimum in 87Sr/86Sr isotope ratio in the Capitanian (Late Guadalupian) and the paleomagnetic Illawarra Reversal in the late Guadalupian. These bio-, chemo-, and magneto-stratigraphical signatures are concordant with those reported from the coeval shallow marine shelf sequences around Pangea. The mid-oceanic, deep- and shallow-water Permian records indicate that significant changes have appeared twice in the second half of the Permian in a global extent. It is emphasized here that everything geologically unusual started in the Late Guadalupian; i.e., (1) the first mass extinction, (2) onset of the superanoxia, (3) sea-level drop down to the Phanerozoic minimum, (4) onset of volatile fluctuation in carbon isotope ratio, 5) 87Sr/86Sr ratio of the Paleozoic minimum, (6) extensive felsic alkaline volcanism, and (7) Illawarra Reversal.The felsic alkaline volcanism and the concurrent formation of several large igneous provinces (LIPs) in the eastern Pangea suggest that the Permian biosphere was involved in severe volcanic hazards twice at the G-LB and the P-TB. This episodic magmatism was likely related to the activity of a mantle superplume that initially rifted Pangea. The supercontinent-dividing superplume branched into several secondary plumes in the mantle transition zone (410–660 km deep) beneath Pangea. These secondary plumes induced the decompressional melting of mantle peridotite and pre-existing Pangean crust to form several LIPs that likely caused a “plume winter” with global cooling by dust/aerosol screens in the stratosphere, gas poisoning, acid rain damage to surface vegetation etc. After the main eruption of plume-derived flood basalt, global warming (plume summer) took over cooling, delayed the recovery of biodiversity, and intensified the ocean stratification. It was repeated twice at the G-LB and P-TB.A unique geomagnetic episode called the Illawarra Reversal around the Wordian–Capitanian boundary (ca. 265 Ma) recorded the appearance of a large instability in the geomagnetic dipole in the Earth’s outer core. This rapid change was triggered likely by the episodic fall-down of a cold megalith (subducted oceanic slabs) from the upper mantle to the D″ layer above the 2900 km-deep core-mantle boundary, in tight association with the launching of a mantle superplume. The initial changes in the surface environment in the Capitanian, i.e., the Kamura cooling event and the first biodiversity decline, were probably led by the weakened geomagnetic intensity due to unstable dipole of geodynamo. Under the low geomagnetic intensity, the flux of galactic cosmic radiation increased to cause extensive cloud coverage over the planet. The resultant high albedo likely drove the Kamura cooling event that also triggered the unusually high productivity in the superocean and also the expansion of O2 minimum zone to start the superanoxia.The “plume winter” scenario is integrated here to explain the “triple-double” during the Paleozoic–Mesozoic transition interval, i.e., double-phased cause, process, and consequence of the greatest global catastrophe in the Phanerozoic, in terms of mantle superplume activity that involved the whole Earth from the core to the surface biosphere.  相似文献   

9.
地幔脱气作用和大气圈惰性气体形成与演化   总被引:5,自引:0,他引:5  
惰性气体同位素地球化学是研究地幔脱气作用和地球大气形成与演化的有效工具。根据惰性气体提供的信息,地球大气圈中惰性气体主要由地幔脱气形成。地球有三个截然不同的惰性气体储集库:MORB(洋中脊玄武岩)型地幔(大量脱了气的地幔),Loihi(夏威夷洛尹黑海山)型地幔(少量脱了气的地幔),和大气圈+海洋+大陆地壳。为了探索这三个气体储集库之间的联系,国外学者已建立了三种地幔脱气模式:①整体脱气(BD)模式,②溶解度控制脱气(SCD)模式,和③稳定态脱气(SSD)模式。其中SCD模式能较好地解释各储集库中惰性气体同位素体系特征。SCD模式认为地幔中各种气体的脱出程度和脱出历史不完全相同,主要受气体在硅酸盐熔体中的溶解度所控制,因而认为地球大气中的各种气体的演化史也不完全相同。从地球形成时算起,大气中惰性气体主要形成和演化的平均时间分别为:130Xe为(21±7)Ma,36Ar为(56±19)Ma,3He为(310±120)Ma,40Ar为1500Ma,4He为800Ma。  相似文献   

10.
The Kaapvaal craton in southern Africa and the Pilbara craton of northwestern Australia are the largest regions on Earth to have retained relatively pristine mid-Archaean rocks (3.0–4.0 Ga).The Kaapvaal craton covers about 1.2×106 km2, and varies in lithospheric thickness between 170 and 350 km. At surface, the craton can be subdivided into a number of Archaean sub-domains; some of the subdomains are also well defined at depth, and local variations in tomography of the lithosphere correspond closely with subdomain boundaries at surface.The Archaean history of the Kaapvaal craton spans about 1 Gyr and can be conveniently subdivided into two periods, each of about the same length as the Phanerozoic. The first period, from circa 3.7-3.1 Ga, records the initial separation of the cratonic lithosphere from the asthenosphere, terminating with a major pulse of accretion tectonics between 3.2 and 3.1 Ga, which includes the formation of “paired metamorphic belts”. This period of continental growth can be compared to plate tectonic processes occurring in modern-day oceanic basins. However, the difference is that in the mid-Archaean, these oceanic processes appear to have occurred in shallower water depths than the modern ocean basins. The second period, from circa 3.1-2.6 Ga, records intra-continental and continental-edge processes: continental growth during this period occurred predominantly through a combination of tectonic accretion of crustal fragments and subduction-related igneous processes, in much the same way as has been documented along the margins of the Pacific and Tethys oceans since the Mesozoic.The intra-oceanic processes resulted in small, but deep-rooted continental nucleii; the first separation of this early continental lithosphere could only have occurred when the mean elevation of mid-oceanicridges sank below sea-level. Substantial recycling of continental lithosphere into the mantle must have occurred during this period of Earth history. During the second period, at least two large continental nucleii amalgamated during collisional processes which, together with internal chemical differentiation processes, created the first stable continental landmass. This landmass, which is known to have been substantially bigger than its present outline, may have been part of the Earth's first supercontinent.The oldest known subdomains of the craton include the oceanic-like rocks of the Barberton greenstone belt. The comagmatic mafic-ultramafic rocks (3.48–3.49 Ga) of this belt represent a remnant of very early oceanic-like lithosphere (known as the Jamestown Ophiolite Complex), which was obducted, approximately 45 Ma after its formation, onto a volcanic arc-like terrain by processes similar to those which have emplaced modern ophiolites at convergent margins of Phanerozoic continents. The early metamorphic history, metamorphic mineralogy, oxygen isotope profiles and degree of hydration of the 3.49 Ga Jamestown Ophiolite Complex are similar to present day subseafloor hydrothermal systems. The ratio of ΔMg to ΔSi for hydrothermally altered igneous rocks, both present day and Archaean, are remarkably uniform at −5(±0.9) and the same as that of hydrothermal fluids venting on the present-day East Pacific Rise. This observation suggests that the process of Mg exchange for Si in hydrothermal systems was commonplace throughout Earth's history.The chemistry of vent fluids and hydrothermally altered igneous rocks was combined with an inventory of 3He in the mantle to model Earth's total hydrothermal flux. An Archaean flux (at 3.5 Ga) of about 10 times present day was accompanied by a correspondingly greater abundance of Mg(OH), SiO2, carbonate and Fe---Mn metasomatic rock types as well as massive sulphides. Assuming a constant column of seawater since the Archaean, the average residence time of seawater in the oceanic crust was 1.65−8.90×105 years in the Archaean. Assuming that 3He and heat are transported from the mantle in silicate melts in uniform proportions, the model stipulates that accretion of oceanic crust decreased from about 3.43−6.5×1017 g/yr to a present-day rate of 0.52−0.8×1017 g/yr, with a drop in heat flow from 1.4−2.6×1020 cal/yr to 2.1−3.2×1019 cal/year.The total amounts of SiO2 and Fe mobilised in marine hydrothermal systems since 3.5 Ga is less than their masses in the present exosphere reservoirs (crust, hydrosphere, atmosphere). The total amounts of Mg, K, CO2, Ca and Mn are greater than their respective masses in exosphere reservoirs; therefore, they must have been recycled into mantle. The total mass of recycled hydrothermal components is small compared to the mass of the mantle. The flux of volatiles in hydrothermal systems is large compared to their volume in the atmosphere suggesting that the CO2 and O2 budgets of the atmosphere have been influenced by hydrothermal processes, especially in the Archaean.  相似文献   

11.
Abrupt climate change: An alternative view   总被引:2,自引:0,他引:2  
Hypotheses and inferences concerning the nature of abrupt climate change, exemplified by the Dansgaard-Oeschger (D-O) events, are reviewed. There is little concrete evidence that these events are more than a regional Greenland phenomenon. The partial coherence of ice core δ18O and CH4 is a possible exception. Claims, however, of D-O presence in most remote locations cannot be distinguished from the hypothesis that many regions are just exhibiting temporal variability in climate proxies with approximately similar frequency content. Further suggestions that D-O events in Greenland are generated by shifts in the North Atlantic ocean circulation seem highly implausible, given the weak contribution of the high latitude ocean to the meridional flux of heat. A more likely scenario is that changes in the ocean circulation are a consequence of wind shifts. The disappearance of D-O events in the Holocene coincides with the disappearance also of the Laurentide and Fennoscandian ice sheets. It is thus suggested that D-O events are a consequence of interactions of the windfield with the continental ice sheets and that better understanding of the wind field in the glacial periods is the highest priority. Wind fields are capable of great volatility and very rapid global-scale teleconnections, and they are efficient generators of oceanic circulation changes and (more speculatively) of multiple states relative to great ice sheets. Connection of D-O events to the possibility of modern abrupt climate change rests on a very weak chain of assumptions.  相似文献   

12.
The growth curve of the continental crust shows that large amounts of continental crust formed in the early part of the Earth history are missing. In order to test a hypothesis that the former crust was subducted to the deep mantle, we performed phase assemblage analysis in the systems of mid-oceanic ridge basalt (MORB), anorthosite, and tonalite–trondhjemite–granite (TTG) down to the core–mantle boundary (CMB) conditions. Results show that all these materials can be subducted to the CMB leading to the development of a compositional layering in the D″ layer. We speculate that there could be five layers of FeO-enriched melt from partial melting of MORB, MORB crust, anorthosite, TTG, and slab or mantle peridotite in ascending order. Although the polymorphic transformation of perovskite to post-perovskite in (Mg,Fe)SiO3 may explain the seismic discontinuity at the top of the D″ layer (D″ discontinuity), the effects of solid solution on the sharpness of the transformation suggest that the compositional layering is more plausible for the origin of the D″ discontinuity. The D″ layer can be an “anti-crust” made up mostly of TTG + anorthosite derived from the former continental crust. Tectonic style of the anti-crust at the CMB is similar to that at the surface. At both places, chemically distinct layers are density stratified and are also characterized by the processes of accretion, magmatism, and metasomatism.  相似文献   

13.
A comprehensive observational database of Holocene relative sea-level (RSL) index points from northwest Europe (Belgium, the Netherlands, northwest Germany, southern North Sea) has been compiled in order to compare and reassess the data collected from the different countries/regions and by different workers on a common time–depth scale. RSL rise varies in magnitude and form between these regions, revealing a complex pattern of differential crustal movement which cannot be solely attributed to tectonic activity. It clearly contains a non-linear, glacio- and/or hydro-isostatic subsidence component, which is only small on the Belgian coastal plain but increases significantly to a value of ca 7.5 m relative to Belgium since 8 cal. ka BP along the northwest German coast. The subsidence is at least in part related to the Post-Glacial collapse of the so-called peripheral forebulge which developed around the Fennoscandian centre of ice loading during the Last Glacial Maximum. The RSL data have been compared to geodynamic Earth models in order to infer the radial viscosity structure of the Earth's mantle underneath NW Europe (lithosphere thickness, upper- and lower-mantle viscosity), and conversely to predict RSL in regions where we have only few observational data (e.g. in the southern North Sea). A very broad range of Earth parameters fit the Belgian RSL data, suggesting that glacial isostatic adjustment (GIA) only had a minor effect on Belgian crustal dynamics during and after the Last Ice Age. In contrast, a narrow range of Earth parameters define the southern North Sea region, reflecting the greater influence of GIA on these deeper/older samples. Modelled RSL data suggest that the zone of maximum forebulge subsidence runs in a relatively narrow, WNW–ESE trending band connecting the German federal state of Lower Saxony with the Dogger Bank area in the southern North Sea. Identification of the effects of local-scale factors such as past changes in tidal range or tectonic activity on the spatial and temporal variations of sea-level index points based on model-data comparisons is possible but is still complicated by the relatively large range of Earth model parameters fitting each RSL curve, emphasising the need for more high-quality observational data.  相似文献   

14.
Phase velocities of teleseismic Rayleigh waves have been measured in the central North Atlantic on both sides of the Azores-Gibraltar Ridge (AGR) by means of a specially designed long-period station network. The dispersion data obtained were regionalized and then subjected to a “hedgehog” inversion, which gives a set of upper mantle models compatible with the observational data within specified error bounds.Reasonable model solutions were selected by using regional body-wave observations, such as Pn- and Sn-wave velocities determined from earthquakes along the AGR. The S(itn) velocities measured indicate that the shear-wave velocity in the mantle part of the lithosphere is much higher on the northern side of the AGR. Strongly negative P-wave residuals in this area indicate faster seismic propagation than implied by the Jeffreys-Bullen travel-time tables, while propagation is much slower in the Gulf of Cadiz area. Furthermore the residuals show a clear difference for paths through oceanic and continental domains and suggest that the transition between these two domains extends much further into the ocean on the southern side of the AGR than on the northern side.The proposed model for the structure of the upper mantle in that region shows that there exists a pronounced velocity contrast across the AGR. Thickening of the lithospheric plate with increasing plate age is indicated to the south of the ridge. The greatest thickness is reached close to the continental margin within a zone about 500 km wide, whose velocity close to the Canary Islands and Madeira is significantly lower, probably due to the well-known volcanic activity there. These observations together with the travel time residuals reveal that this zone seems to be of a transitional nature somewhere between a continental and oceanic structure.  相似文献   

15.
The Takaka Terrane in New Zealand is one of the best exposed arc fragments of the early Paleozoic Australian-Antarctic convergent margin and constitutes one of the most outboard terranes of this margin in paleogeographic reconstructions. Pb-Nd isotope compositions of clinopyroxenes from the Cambrian Devil River Volcanics of the Takaka Terrane enable identification of the location of the terrane in the Paleo-Pacific Ocean. The Devil River Volcanics, a suite of primitive arc and back-arc rocks, are interbedded with the partly continent-derived Haupiri Group sediments. Extremely radiogenic Pb and unradiogenic Nd compositions in the arc rocks cannot be explained by assimilation of the Haupiri Group sediments or a continental basement of such a composition. Pb isotope compositions of the Takaka Terrane sediments are much less radiogenic and overlap with crustal compositions of the Lachlan Fold Belt in Australia, suggesting that both units are derived from one source, the Australian-Antarctic Pacific margin. Pb-Nd isotope compositions in the Devil River Volcanics reflect contamination of their mantle sources by subducted sediments derived from Archean provinces in either Antarctica or Laurentia. Both provinces show characteristically high 207Pb/204Pb500 and were located at the Pacific rim in the Cambrian. Mixing between mantle and Proterozoic continental material from present western South America or eastern Laurentia cannot explain the high 207Pb/204Pb500 in the New Zealand rocks. As in New Zealand, extreme spreads in Pb-Nd isotope compositions in other Cambrian volcano-sedimentary sequences in southeast Australia and Tasmania can be explained by the same model, suggesting that all these fragments originated along the Australian-Antarctic Gondwana margin. Pb isotope compositions of arc rocks, therefore, provide a new tool for terrane analysis in the early Paleozoic Pacific ocean.  相似文献   

16.
Elevations on Earth are dominantly controlled by crustal buoyancy, primarily through variations in crustal thickness: continents ride higher than ocean basins because they are underlain by thicker crust. Mountain building, where crust is magmatically or tectonically thickened, is thus key to making continents. However, most of the continents have long passed their mountain building origins, having since subsided back to near sea level. The elevations of the old, stable continents are lower than that expected for their crustal thicknesses, requiring a subcrustal component of negative buoyancy that develops after mountain building. While initial subsidence is driven by crustal erosion, thermal relaxation through growth of a cold thermal boundary layer provides the negative buoyancy that causes continents to subside further. The maximum thickness of this thermal boundary layer is controlled by the thickness of a chemically and rheologically distinct continental mantle root, formed during large-scale mantle melting billions of years ago. The final resting elevation of a stabilized continent is controlled by the thickness of this thermal boundary layer and the temperature of the Earth’s mantle, such that continents ride higher in a cooler mantle and lower in a hot mantle. Constrained by the thermal history of the Earth, continents are predicted to have been mostly below sea level for most of Earth’s history, with areas of land being confined to narrow strips of active mountain building. Large-scale emergence of stable continents occurred late in Earth’s history (Neoproterozoic) over a 100–300 million year transition, irreversibly altering the surface of the Earth in terms of weathering, climate, biogeochemical cycling and the evolution of life. Climate during the transition would be expected to be unstable, swinging back and forth between icehouse and greenhouse states as higher order fluctuations in mantle dynamics would cause the Earth to fluctuate rapidly between water and terrestrial worlds.  相似文献   

17.
In the fifteen years since the importance of collisional plateaus with thickened continental crust began to be recognized as one of the inevitable consequences of the processes of plate tectonics, rapid progress in their understanding has come from studies of the world's only active terminal collision zones in the Himalayan-Tibetan and Turkish-Iranian plateaus.Ancient collisional plateaus are being recognized throughout the geological record (back to 3.8 Ga) from the occurrence of extensive areas (typically > 500,000 km2) of 8 kbar metamorphism in granulite facies or from the occurrence of extensive areas of higher level minimum-melt composition granite rocks whose isotopic signatures indicate reactivation of existing continental crust rather than addition of new crust from the mantle at the time of collision. Recognition of strike-slip faulting in the ancient collisional plateau areas indicates that “tectonic escape” may have been as important in the past as it is today.Earth may not be the only planet on which collisional plateaus are important. The highlands of Venus (approximately 7% of the surface with elevations over 1.5 km above mean planetary radius) can only exist as a result of crustal thickening, and not as a product of lithospheric thinning. Most of these highlands can be explained by models involving volcanic construction. However, the highest peaks, including Maxwell Montes, the highest mapped area of Venus rising over 10 km above mean planetary radius, require much greater crustal thickening to support them than can reasonably be explained by a volcanic mechanism. Geological features of Maxwell Montes inferred from radar images suggest some analogy between Maxwell Montes and the Tibetan plateau.It is somewhat paradoxical that extensional tectonics are commonly associated with continental collision, and that collision-related rifts may be the only sites where the uppermost layers of a collision-thickened crust are preserved from erosion. Extensional stress fields are generated during continental collision, primarily in areas associated with strike-slip faulting and “tectonic escape”. Additional extensional stresses are gravitationally generated associated with the topography and thickened crust in a collision zone. Tectonically thickened crust is particularly susceptible to rifting as its lithosphere is weak as a result of heating associated with magmatism. This lithosphere is also compositionally weak because of the relatively thick crust, dominated by a weak quartz rheology, and thin mantle lithosphere, dominated by a strong olivine rheology, in comparison with a lithosphere with a more normal crustal thickness. Thus, the common association of rifts and collision zones may be a consequence of both stresses generated during collision and modification of the lithosphere by collision.  相似文献   

18.
Among Palaeoproterozoic glacial deposits on four continents, the best preserved and documented are in the Huronian on the north shore of Lake Huron, Ontario, where three glaciogenic formations have been recognized. The youngest is the Gowganda Formation. The glacial deposits of the Gowganda Formation were deposited on a newly formed passive margin. To the west, on the south side of Lake Superior, the oldest Palaeoproterozoic succession (Chocolay Group) begins with glaciogenic diamictites that have been correlated with the Gowganda Formation. The >2.2 Ga passive margin succession (Chocolay Group=upper Huronian) is overlain, with profound unconformity, by a >1.88 Ga succession that includes the superior-type banded iron-formations (BIFs). The iron-formations are therefore not genetically associated with Palaeoproterozoic glaciation but were deposited 300 Ma later in a basin that formed as a result of closure of the “Huronian” ocean. In Western Australia, Palaeoproterozoic glaciogenic deposits of the Meteorite Bore Member appear to have formed part of a similar basin fill. The glaciogenic rocks are, however, separated from underlying BIF by a thick siliciclastic succession. In both North America and Western Australia, BIF-deposition took place in compressional (possibly foreland basin) settings but the iron-formations are of greatly different age, suggesting that the most significant control on their formation was not oxygenation of the Earth’s atmosphere but rather, emplacement of Fe-rich waters (uplifted as a result of ocean floor destruction?) in a siliciclastic-starved environment where oxidation (biogenic?) could take place. Some of the Australian BIFs appear to predate the appearance of red beds in North American Palaeoproterozoic successions and are therefore unlikely to be related to oxygenation of the atmosphere.Neoproterozoic glaciogenic deposits are widespread on the world’s continents. Some are associated with iron-formations. Two theories have emerged to explain these enigmatic BIFs. According to the snowball Earth hypothesis (SEH), ice-covered oceans would have permitted buildup of dissolved Fe. Precipitation of Fe-rich sediments would have taken place following reoxygenation of the hydrosphere as the ice cover disappeared. A second theory involves glaciation of Red Sea rift-type basins. Fe-charged brines in such basins would have precipitated on being mixed with “normal” seawater as a result of glacially driven thermal overturn. Both theories provide an explanation of the hydrothermal imprint on the geochemistry of Neoproterozoic BIF but the restricted development of BIF (relative to glacial deposits), evidence of rift activity such as significant facies and thickness changes, and association with volcanic rocks, all favour deposition in a rift environment.Cap carbonates are one of the cornerstones of the SEH. Escape from the snowball condition is said to have resulted from buildup of atmospheric CO2 while the weathering cycle was stopped. Under such conditions, the first siliciclastic deposits following glaciation, should be extremely weathered, and should be overlain by sedimentary rocks that show a gradual return to more “normal” compositions. Using a chemical index of alteration (CIA) it can be shown that, in the case of the Gowganda Formation, the CIA shows a gradual upward increase, opposite to that predicted by the SEH. The Earth underwent severe climatic perturbations both near the beginning and end of the Proterozoic Eon but whether it attained a totally frozen surface condition (as postulated under the SEH) remains speculative.  相似文献   

19.
The Xiong'er volcanic belt, covering an area of more than 60,000 km2 along the southern margin of the North China Craton, has long been considered an intra-continental rift zone and recently interpreted as part of a large igneous province formed by a mantle plume that led to the breakup of the Paleo-Mesoproterozoic supercontinent Columbia. However, such interpretations cannot be accommodated by lithology, mineralogy, geochemistry and geochronology of the volcanic rocks in the belt. Lithologically, the Xiong'er volcanic belt is dominated by basaltic andesite and andesite, with minor dacite and rhyolite, different from rock associations related to continental rifts or mantle plumes, which are generally bimodal and dominated by mafic components. However, they are remarkably similar to those rock associations in modern continental margin arcs. In some of the basaltic andesites and andesites, amphibole is a common phenocryst phase, suggesting the involvement of H2O-rich fluids in the petrogenesis of the Xiong'er volcanic rocks. Geochemically, the Xiong'er volcanic rocks fall in the calc-alkaline series, and in most tectono-magmatic discrimination diagrams, the majority of the Xiong'er volcanic rocks show affinities to magmatic arcs. In the primitive mantle normalized trace-element diagrams, the Xiong'er volcanic rocks show enrichments in the LILE and LREE, and negative Nb–Ta–Ti anomalies, similar to arc-related volcanic rocks produced by the hydrous melting of metasomatized mantle wedge. Nd-isotope compositions of the Xiong'er volcanic rocks suggest that 5–15% older crust has been transferred into the upper lithospheric mantle by subduction-related recycling during Archean to Paleoproterozoic time. Available SHRIMP and LA-ICP-MS U–Pb zircon age data indicate that the Xiong'er volcanic rocks erupted intermittently over a protracted interval from 1.78 Ga, through 1.76–1.75 Ga and 1.65 Ga, to 1.45 Ga, though the major phase of the volcanism occurred at 1.78–1.75 Ga. Such multiple and intermittent volcanism is inconsistent with a mantle plume-driven rifting event, but is not uncommon in ancient and existing continental margin arcs. Taken together, the Xiong'er volcanic belt was most likely a Paleo-Mesoproterozoic continental magmatic arc that formed at the southern margin of the North China Craton. Similar Paleo-Mesoproterozoic continental magmatic arcs were also present at the southern and southeastern margins of Laurentia, the southern margin of Baltica, the northwestern margin of Amonzonia, and the southern and eastern margins of the North Australia Craton, which are considered to represent subduction-related episodic outbuilding on the continental margins of the Paleo-Mesoproterozoic supercontinent Columbia. Therefore, in any configuration of the supercontinent Columbia, the southern margin of the North China Craton could not have been connected to any other continental block as proposed in a recent configuration, but must have faced an open ocean whose lithosphere was subducted beneath the southern margin of the North China Craton.  相似文献   

20.
W.G. Ernst   《Gondwana Research》2007,11(1-2):38
In the early Earth, accretionary impact heating, including collision with a large, Mars-sized object, decay of short-lived radioisotopes, and (after an initial thermal run-up) continuous segregation of the liquid Fe–Ni core resulted in extensive the melting of the silicate mantle and in the formation of a near-surface magma mush ocean. Progressive, continuous degassing and chemical–gravitational differentiation of the crust–mantle system accompanied this Hadean stage, and has gradually lessened during the subsequent cooling of the planet. Mantle and core overturn was vigorous in the Hadean Earth, reflecting deep-seated chemical heterogeneities and concentrations of primordial heat. Hot, bottom-up mantle convection, including voluminous plume ascent, efficiently rid the planet of much thermal energy, but gradually decreased in importance with the passage of time. Formation of lithospheric scum began when planetary surface temperatures fell below those of basalt and peridotite solidi. Thickening and broadening of lithospheric plates are inferred from the post-Hadean rock record. Developmental stages of mantle circulation included: (a) 4.5–4.4 Ga, early, chaotic magma ocean circulation involving an incipient or pre-plate regime; (b) 4.4–2.7 Ga, growth of small micro-oceanic and microcontinental platelets, all returned to the mantle prior to 4.0 Ga, but increasing in size and progressively suturing sialic crust-capped lithospheric amalgams at and near the surface over time; (c) 2.7–1.0 Ga, assembly of cratons surmounting larger, supercontinental plates; and (d) 1.0 Ga–present, modern, laminar-flowing asthenospheric cells capped by gigantic, Wilson-cycle lithospheric plates. Restriction of komatiitic lavas to the Archean, and of ophiolite complexes ± alkaline igneous rocks, high-pressure and ultrahigh-pressure metamorphic terranes to progressively younger Proterozoic–Phanerozoic orogenic belts supports the idea that planetary thermal relaxation promoted the increasingly negative buoyancy of cooler oceanic lithosphere. The Thickening of oceanic plates enhanced the gravitational instability and the consequent overturn of the outer Earth as cold, top-down oceanic mantle convection. The scales and dynamics of deep-seated asthenospheric circulation, and of lithospheric foundering + shallow asthenospheric return flow evidently have evolved gradually over geologic time in response to the progressive cooling of the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号