共查询到20条相似文献,搜索用时 14 毫秒
1.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone. 相似文献
2.
A new index of wave activity (ULF index) is applied to analyze daytime magnetic pulsations in the Pc5 range (f = 2–7 mHz) during ten successive recurrent magnetic storms (CIR (corotating interaction region) storms) of 2006. The most
intense daytime geomagnetic Pc5 pulsations on the Earth’s surface in all phases of CIR storms are predominantly observed in
the pre-noon sector at latitudes higher than 70°, while those in CME storms (storms initiated by coronal mass ejection (CME))
are observed at latitudes lower than 70°. A comparison of wave activity during CIR and CME storms has shown that the amplitude
of Pc5 pulsations in CIR storms is much smaller than that in CME storms and the spectrum maximum is observed at lower frequencies
and higher latitudes. At the same time, the mechanism of ULF wave generation during both types of magnetic storms seems to
be similar, namely, resonance of magnetic field lines due to the development of the Kelvin-Helmholtz instability caused by
an approach of a high-velocity solar wind stream to the Earth’s magnetosphere. Since resonance oscillations are excited only
in the closed magnetosphere, the higher-latitude position of the Pc5 pulsation intensity maximum in CIR storms points to larger
dimensions of the daytime magnetosphere during CIR storms as compared to CME storms. 相似文献
3.
根据巴颜喀拉块体东部2011—2014年3期岩石圈磁场年变化情况,结合地壳应力资料,重点分析龙门山断裂带南段的岩石圈磁场变化与应力积累的关系。该区域2011—2012年和2012—2013年岩石圈磁场变化明显弱于周边区域,实测地壳应力结果反映汶川M_S8.0地震震后应力积累水平很高。压磁效应分析认为汶川M_S8.0地震后该区域高应力积累、低应变率的动力学背景是控制该区域岩石圈磁场弱变化的主要因素。此外,芦山M_S7.0地震及康定M_S6.3地震前震中区存在局部岩石圈磁场水平矢量的弱变化现象,尤其是2012—2013年水平矢量大小和方向均与周边区域相比存在明显差异,这可能是两次地震的前兆异常。 相似文献
4.
5.
T. Yamashita 《Pure and Applied Geophysics》1999,155(2-4):625-647
—Spatio-temporal variation of rupture activity is modeled assuming fluid migration in a narrow porous fault zone formed along a vertical strike-slip fault in a semi-infinite elastic medium. Pores are assumed to be created in the fault zone by fault slip. The effective stress principle coupled to the Coulomb failure criterion introduces mechanical coupling between fault slip and pore fluid. The fluid is assumed to flow out of a localized high-pressure fluid compartment in the fault with the onset of earthquake rupture. The duration of the earthquake sequence is assumed to be considerably shorter than the recurrence period of characteristic events on the fault. The rupture process is shown to be significantly dependent on the rate of pore creation. If the rate is large enough, a foreshock–mainshock sequence is never observed. When an inhomogeneity is introduced in the spatial distribution of permeability, high complexity is observed in the spatio-temporal variation of rupture activity. For example, frequency-magnitude statistics of intermediate-size events are shown to obey the Gutenberg–Richter relation. Rupture sequences with features of earthquake swarms can be simulated when the rate of pore creation is relatively large. Such sequences generally start and end gradually with no single event dominating in the sequence. In addition, the b values are shown to be unusually large. These are consistent with seismological observations on earthquake swarms. 相似文献
6.
Izvestiya, Physics of the Solid Earth - Kinematic generation of electrically conductive fluid by space-periodic flow is considered. The generated magnetic modes have a form of a product of... 相似文献
7.
在层状半空间精确动力刚度矩阵和斜线荷载动力格林函数的基础上建立间接边界元方法,在频域内求解无破碎带断层场地对入射平面SH波的散射。为方便求解,将总波场分解为自由波场和散射波场,自由波场由直接刚度法求得,断层两侧的散射波场通过在断层面上分别对两侧施加均布斜线荷载产生的动力响应来模拟,虚拟荷载的密度可通过引入断层表面的边界条件确定,最后叠加自由波场和散射波场求得总波场。以有落差断层和无落差断层模型为例进行数值计算,分析断层落差、断层倾角以及断层两侧介质的刚度比对散射效应的影响。研究表明,断层落差与波长相当时,断层对SH波的放大作用最大;地表位移幅值随着断层倾角的增大逐渐增大;若断层无落差且其两侧刚度不同时,一般刚度较小一侧地表位移幅值较大且振荡更为剧烈,波从刚度较小一侧入射时位移幅值放大尤为显著。 相似文献
8.
9.
Abstract A multi-offset hydrophone vertical seismic profiling (VSP) experiment was done in a 747 m deep borehole at Nojima Hirabayashi, Hyogo prefecture, Japan. The borehole was drilled to penetrate the Nojima Fault, which was active in the 1995 Hyogo-ken Nanbu earthquake. The purpose of the hydrophone VSP is to detect subsurface permeable fractures and permeable zones and, in the present case, to estimate the permeability of the Nojima Fault. The analysis was based on a model by which tube waves are generated when incident P-waves compress the permeable fractures (or permeable zones) intersecting the borehole and a fluid in the fracture is injected into the borehole. Permeable fractures (or permeable zones) are detected at the depths of tube wave generation, and fracture permeability is calculated from the amplitude ratio of tube wave to incident P-wave. Several generations of tube waves were detected from the VSP sections. Distinct tube waves were generated at depths of the fault zone that are characterized by altered and deformed granodiorite with a fault gouge, suggesting that permeable fractures and permeable zones exist in the fault zone. Tube wave analysis shows that the permeability of the fault gouge from 624 m to 625 m is estimated to be approximately 2 × 10−12 m2 . 相似文献
10.
J. A. Jacobs 《Surveys in Geophysics》1998,19(2):139-187
The Earth's main magnetic field can be approximated by an axial, geocentric dipole. The remaining non-dipole field is much smaller and is a regional rather than a global feature – quite large changes can occur in a few ka. This review is concerned with changes in the dipole component of the geomagnetic field, and one of the problems is in separating the non-dipole from the dipole contributions to the field. Unlike the many determinations of the direction of the Earth's magnetic field in the past (which have led to fundamental contributions to our understanding of plate tectonics and shown that the field can on occasion reverse its polarity), estimates of the intensity of the field are comparatively few, especially before the Holocene. This is mainly the result of experimental difficulties in obtaining reliable measurements of the field. These problems are discussed in some detail and are followed by a short account of archaeomagnetic intensities and results from Hawaii where many of the first determinations were obtained. Measurements for the last 100 ka from both lavas and lacustrine and oceanic sediments are reviewed and results from different areas compared. An asymmetric saw-tooth pattern has been observed in some of the records over the last few Ma, and this rather controversial question is discussed. Finally an account is given of the far more limited data on palaeointensities in earlier times.A short discussion is given of the interpretation of coherent short wavelength variations which are observed in many marine magnetic profiles. Although short reversals of the field may be responsible for some of these tiny wiggles, it is more likely that in general they are the result of changes in the strength of the Earth's magnetic field. 相似文献
11.
Numerical Estimate of the Spectral Resonance Structure Frequency Scale of Natural ULF Magnetic Field
The spectral resonance structure (SRS) of the magnetic component of natural electromagnetic noise in the frequency range 0.5 – 2.5 Hz is investigated to estimate the frequency scale of the structure. The magnetic field data recorded at 49°20'N, 22°40'E, in the Bieszczady Mountains, Poland, at night hours of May 1996 – 2001 are used. It is assumed that the resonant frequency pattern of the ionospheric Alfvén resonance (IAR) appears in the spectral resonance structure. Both a model of the ionospheric Alfvén resonance for night-time conditions of the ionosphere and an algorithm of evaluating the frequency scale are presented. The algorithm is applied to the experimental data. The results are compared to those obtained with the International Reference Ionosphere model. 相似文献
12.
Pavel N. Mager Dmitri Yu. Klimushkin Nickolay Ivchenko 《Journal of Atmospheric and Solar》2009,71(16):1677-1680
An often observed and still unexplained feature of the high-m Alfvén waves in the terrestrial magnetosphere is their equatorward phase motion, in contrast with low-m waves. We suggest an explanation of this fact in terms of a model of wave excitation by an azimuthally drifting particle inhomogeneity injected during substorm activity. The azimuthal direction of the phase velocity coincides with that of the cloud. If the drift velocity increases with the radial coordinate, the particle cloud is stretched into spiral in the equatorial plane which leads to a radial component of the phase velocity directed toward Earth, that is, an equatorward phase propagation. 相似文献
13.
14.
Hou Kangming Zong Kaihong Guo Jiangning Xiong Zhen Li Limei Zhou Caixia Jiang Bo 《中国地震研究》2009,23(1):78-86
The Changjiang fault zone, also known as the Mufushan-Jiaoshan fault, is a famous fault located at the southern bank of the Changjiang River, near the Nanjing downtown area. Based on multidisciplinary data from shallow artificial seismic explorations in the target detecting area (Nanjing city and the nearby areas), trenching and drilling explorations, classification of Quaternary strata and chronology dating data, this paper provides the most up-to-date results regarding activities of the Changjiang fault zone, including the most recent active time, activity nature, related active parameters, and their relation to seismic activity. 相似文献
15.
在2008年5月12日汶川MS8.0地震和2013年4月20日芦山MS7.0地震中,龙门山中央断裂南段的盐井—五龙断裂均未发现地表破裂现象,加之该断裂浅层地球物理资料极度匮乏,在一定程度上限制了对龙门山断裂带南段地震危险性的评价和发震能力的评估。针对龙门山中央断裂南段的盐井-五龙断裂经过区段的主要乡(镇)所在地多为宽度不大于300m的山间峡谷地区,且探测场区存在交通条件不便、场地工作面狭窄等问题,在浅层地震反射波法探测工作中采用小道间距、小偏移距、多道短排列接收和共反射点多次覆盖观测的地震数据采集方式,并经数据处理后获得地震反射剖面图像。浅层地震探测定位结果结合高密度电阻率成像断面、探槽开挖和钻孔联合剖面资料,共同揭示了NE向的盐井—五龙断裂在宝兴县五龙乡东风村一带精确的空间展布位置、产状规模和近地表构造形态。探测结果表明盐井—五龙断裂于五龙乡北东风村西河两岸的T1阶地处隐伏通过,性质为倾向NW的逆冲断裂,近地表倾角50°~60°,上断点埋深19m。该断裂断错宝兴西河T2、T3阶地,西河右岸T1阶地断裂通过处两侧基岩的断距6~8 m,其破碎带及其影响带宽度约30m。本文浅层地球物理探测成果可对判定盐井—五龙断裂的近地表构造活动提供可靠的地震学证据,也为地震重灾区(宝兴县城)的灾后工程选址重建、地震危险性评价和制定抗震防灾规划提供了科学的基础资料。 相似文献
16.
The problem of the transport and transformation of magnetic fields from the generation zone to the photosphere is studied in this paper. For this purpose, the temporal variations of parameters of bipolar magnetic regions are analyzed based on the magnetic synoptic maps of the Wilcox Solar Observatory (WSO) for the declining phase of cycle 22. A 150-day modulation of the magnetic flux value in bipolar regions and a variation in their rotation velocity with a duration of 80–100 days have been found. Such variations in the parameters are interpreted as a result of action of supergiant and giant convection cells. The magnetic flux from the generation zone emerges through the local channels formed by the supergiant convection cells. From the level of 0.95 RSun, the flux is redistributed by giant cells, which form bipolar magnetic regions on the photosphere. 相似文献
17.
D. V. Erofeev 《Geomagnetism and Aeronomy》2017,57(7):864-868
We consider a model that couples the magnetic field fluctuations in the heliosphere with random shifts of force line footpoints on the Sun. This model generalizes the Giacalone (2001) model by taking into account the large-scale inhomogeneity of the solar wind velocity. This generalization aims to explain a number of specific features of the distribution of IMF directions, such as the change in the asymmetry of the distribution of IMF directions as a function of heliographic latitude and the solar cycle phase and the correlation of azimuthal angles and inclinations of the IMF; the sign of this correlation changes during the solar magnetic cycle. The simulation results have shown that the gradients of the solar wind speed can actually explain these specific features of the distribution of IMF directions, at least qualitatively. 相似文献
18.
19.
—Gephart and Forsyth’s (1984) algorithm for stress inversion of earthquake fault-plane solutions has been applied to a set of ninety intermediate and deep events occurring in the southern Tyrrhenian region between 1976 and 1995. P- and S-wave data from local seismic networks in southern Italy, the Italian National Network and international bulletins, have been used for hypocenter and focal mechanism computations. Stress inversion runs performed after accurate selection and weighting of fault-plane solutions have allowed us to identify stress space variations at a higher level of detail than available from all previous investigations carried out in the study area. The maximum compressive stress has been shown to follow the depth-decreasing dip of the Wadati-Benioff zone, along the entire zone from a depth of 90 km, to the depth of the deepest events (about 500 km). Variations to such a stress pattern have been found, possibly related to mantle dynamics and the complex composition of the subducting structure. The diffused state of down-dip compression suggests that the Tyrrhenian subduction has already evolved to the point where the lower end of the slab has reached high-strength mantle materials, the load of the excess mass is entirely supported from below and most of the subducted slab is under compression. In agreement with the lack of large, shallow thrusting events in the immersion zone, the findings of the present study appear to agree well with geodynamic models assuming a passive subduction process with eastward roll-back of the Ionian lithosphere in the study area. In this context, the depth-decrease of the slab dip may also find a reasonable explanation. 相似文献
20.
Hydraulic Conductivity Measurements in the Unsaturated Zone Using Improved Well Analyses 总被引:4,自引:0,他引:4
The flow of ponded water into and through the unsaturated zone depends on both the saturated and unsaturated components of the hydraulic conductivity. Recent studies indicate that the ratio of the saturated (Kfs ) to the unsaturated (φm ) components (Kfs /φm =α*) of flow lies within prescribed bounds for most field soils, i.e., 1m−1 ≤α*≤ 100 m−1 . In addition, the fact that the calculation of Kfs and φm is not strongly dependent on the choice of α*, suggests that a site estimation of α* leads to reasonable "best estimates" of Kfs and φm when using the constant head well permeameter technique. As a consequence, measurement of the steady flow rate using only one ponded head may be all that is necessary for many practical applications. Multiple head measurements or independent measurements of α* or φm can be used, however, to give more accurate estimates of Kfs if required. 相似文献