首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site.
Leaf samples of broad-leafed cottonwood, Populus deltoides , were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or "well plant," functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby.
Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.  相似文献   

2.
A graphical method was devised for designing contaminant detection monitoring networks in aquifers. The approach eliminates bias in detection efficiency among well pairs, thereby improving the overall efficiency of a ground water monitoring network. In the equidistant configurations derived by the graphical approach, all wells are located the same distance from a landfill, but the distance is measured parallel to ground water flow, Measured perpendicular to ground water flow, there is also an equal spacing between wells in an equidistant network. A simulation model was used to compare an equidistant network to a peripheral monitoring configuration, in which wells were spaced evenly along the downgradient boundaries of a landfill. The equidistant network yielded a 12.4% higher detection efficiency and also facilitated earlier release detection. In practice, the graphical approach that yields equidistant configurations can be used to identify candidate monitoring networks to detect potential releases from landfills.  相似文献   

3.
《水文科学杂志》2013,58(3):524-530
Abstract

Detection efficiencies of alternative groundwater monitoring networks were evaluated in relation to distance to a buffer zone (contaminant migration) boundary. This boundary establishes a distance limit within which contaminant plumes should pass through monitoring wells, located on curvilinear segments (monitoring loci) near a waste storage facility. Alternative strategies allocated monitoring wells to loci at specified distances, measured parallel to groundwater flow, from the downgradient boundaries of a landfill. One approach constrained wells to equal spacing, measured perpendicular to groundwater flow. Compressing well locations 10% closer to the downgradient corner of the landfill rendered alternative monitoring configurations. Computations by a monitoring efficiency model indicated: (a) networks largely maintained detection efficiency for different contaminant migration boundaries; (b) one network most efficiently attained a target detection capability for all contaminant migration boundaries; and (c) compressed networks slightly outperformed equal-spaced counterparts. Compressed networks with more wells along closer monitoring loci best maintained the detection efficiency when shifting the contaminant migration boundary closer to the landfill. Procedures described in this paper may be useful for examining trade-offs between monitoring efficiency and distance limits of contaminant travel at landfills posing potential hazards to underlying groundwater.  相似文献   

4.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

5.
Ground water samples collected from the Norman Landfill research site in central Oklahoma were analyzed as part of the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program's national reconnaissance of pharmaceuticals and other organic waste water contaminants (OWCs) in ground water. Five sites, four of which are located downgradient of the landfill, were sampled in 2000 and analyzed for 76 OWCs using four research methods developed by the USGS. OWCs were detected in water samples from all of the sites sampled, with 22 of the 76 OWCs being detected at least once. Cholesterol (a plant and animal steroid), was detected at all five sites and was the only compound detected in a well upgradient of the landfill. N,N-diethyltoluamide (DEBT used in insect repellent) and tri(2-chloroethyl) phosphate (fire-retardant) were detected in water samples from all four sites located within the landfill-derived leachate plume. The sites closest to the landfill had more detections and greater concentrations of each of the detected compounds than sites located farther away. Detection of multiple OWCs occurred in the four sites located within the leachate plume, with a minimum of four and a maximum of 17 OWCs detected. Because the landfill was established in the 1920s and closed in 1985, many compounds detected in the leachate plume were likely disposed of decades ago. These results indicate the potential for long-term persistence and transport of some OWCs in ground water.  相似文献   

6.
Two borehole geophysical methods—electromagnetic induction and natural gamma radiation logs—were used to vertically delineate landfill leachate plumes in a glacial aquifer. Geophysical logs of monitoring wells near two land-fills in a glacial aquifer in west-central Vermont show that borehole geophysical methods can aid in interpretation of geologic logs and placement of monitoring well screens to sample landfill leachate plumes.
Zones of high electrical conductance were delineated from the electromagnetic log in wells near two landfills. Some of these zones were found to correlate with silt and clay units on the basis of drilling and gamma logs. Monitoring wells were screened specifically in zones of high electrical conductivity that did not correlate to a silt or clay unit. Zones of high electrical conductivity that did not correlate to a silt or clay unit were caused by the presence of ground water with a high specific conductance, generally from 1000 to 2370 μS/cm (microsiemens per centimeter at 25 degrees Celsius). Ambient ground water in the study area has a specific conductance of approximately 200 to 400 μS/cm. Landfill leachate plumes were found to be approximately 5 to 20 feet thick and to be near the water table surface.  相似文献   

7.
There has been considerable debate regarding the chemical characterization of landfill leachate in general and the comparison of various types of landfill leachate (e.g., hazardous, codisposal, and municipal) in particular. For example, the preamble to the U.S. EPA Subtitle D regulation (40 CFR Parts 257 and 258) suggests that there are no significant differences between the number and concentration of toxic constituents in hazardous versus municipal solid waste landfill leachate. The purpose of this paper is to statistically test this hypothesis in a large leachate database comprising 1490 leachate samples from 283 sample points (i.e., monitoring location such as a leachate sump) in 93 landfill waste cells (i.e., a section of a facility that took a specific waste slream or collection of similar waste streams) from 48 sites with municipal, codisposal, or hazardous waste site histories. Results of the analysis reveal clear differention between landfill leachate types, both in terms of constituents detected and their concentrations. The result of the analysis is a classification function that can estimate the probability that new leachate or ground water sample was produced by the disposal of municipal, codisposal, or hazardous waste. This type of computation is illustrated, and applications of the model to Superfund cost-allocation problems are discussed.  相似文献   

8.
A remedial investigation (RI) was performed in an area downgradient from an abandoned missile silo at Vandenberg Air Force Base, California, as part of the United States Air Force Installation Restoration Program (IRP). A number of complementary investigative techniques were used to assure a reliable assessment of site contamination. These included the review of aerial photographs, the use of an organic vapor analyzer (OVA) and carbon adsorption/mass spectrometer (MS) method to conduct a soil-gas survey; magnetic and electromagnetic geophysical surveys; bedrock permeability testing; and the chemical analysis of soil, sediment, surface water, and ground water samples. The results from this investigation revealed the presence of an undocumented landfill and a small trichloroethylene plume in ground water at concentrations ranging from 6.7 ppb to 31 ppb. The investigation also identified local ground water flow direction, provided strong evidence of the location of potential sources of contamination, and defined the downgradient extent of ground water contamination. Because the identified contaminants have not as yet reached the environmentally sensitive wetland at the base of the slope below this facility, there is still time to propose remedial alternatives that would serve to protect this environmentally sensitive area.  相似文献   

9.
An abandoned creosote facility in Conroe, Texas, has become a field site for the National Center for Ground Water Research (NCGWR) at Rice University. Ground-water contamination in the shallow aquifer beneath the site was characterized by sampling soils and water quality at 14 monitoring wells and 35 boreholes. Results from six sampling trips over two years for inorganic and organic chemical concentrations in the ground water show wells around the site were contaminated to levels above 800 μg/l for naphthalene, 400 μg/1 for methyl naphthalene, and 150 μg/1 for dibenzofuran. Conservative constituents, traced by chloride concentrations up to 75 mg/l, have migrated 300 ft (90 m) downgradient of the site. Organic contaminants have been adsorbed and microbially degraded in their migration from the waste source as evidenced by their attenuated concentrations. Detailed field pump tests have been performed to evaluate hydraulic conductivity at several of the shallow wells. The U.S. Geological Survey (USGS) Solute Transport Model (Konikow and Bredehoeft, 1978) has been used to predict chloride plume patterns and evaluate parameters which govern transport processes at the Conroe waste site.  相似文献   

10.
Lawrence Livermore National Laboratory (LLNL) uses a cost-effective sampling (CES) methodology to evaluate and review ground water contaminant data and optimize the site's ground water monitoring plan. The CES methodology is part of LLNL's regulatory approved compliance monitoring plan (Lamarre et al. 1996). It allows LLNL to adjust the ground water sampling plan every quarter in response to changing conditions at the site. Since the use of the CES methodology has been approved by the appropriate regulatory agencies, such adjustments do not need additional regulatory approval. This permits LLNL to respond more quickly to changing conditions. The CES methodology bases the sampling frequency for each location on trend, variability, and magnitude statistics describing the contaminants at that location, and on the input of the technical staff (hydrologists, chemists, statisticians, and project leaders). After initial setup is complete, each application of CES takes only a few days for as many as 400 wells. Effective use of the CES methodology requires sufficient data, an understanding of contaminant transport at the site, and an adequate number of monitoring wells downgradient of the contamination. The initial implementation of CES at LLNL in 1992 produced a 40% reduction in the required number of annual routine ground water samples at LLNL. This has saved LLNL $390,000 annually in sampling, analysis, and data management costs.  相似文献   

11.
In the past 30 to 40 years, floodplain areas of large rivers, such as the Missouri River, have been extensively used for large industrial and municipal landfills. Many of these sites are now causing varying degrees of ground water contamination. Rapid geophysical characterization techniques have proven useful for delineation of anomalous areas indicative of potential contaminant plumes. These methods have also resulted in a cost effective approach to the location and number of monitoring wells.
An effective technique to initially characterize ground water contamination at such landfills along the Missouri River in northwestern Missouri involved a combination of electrical resistivity and electromagnetic conductivity methods. Resistivity was used to obtain soundings of the alluvium by using a modified Wenner array and to corroborate shallow electromagnetic conductivity measurements by using short Wenner array electrode spacings.
Upon confirmation of similar measurements of the upper soils for the two methods, numerous electromagnetic conductivity traverses were made at each landfill site. The data generated from these surveys were graphed and contoured to delineate anomalous areas. Based on the geophysical study, a ground water monitoring well network was then designed for each landfill.
As a result, a minimal number of wells were required to initially characterize the ground water quality at these two sites. In general, analysis of water samples from these wells displayed good correlation with the geophysical results.  相似文献   

12.
A statistical trend methodology is used to compare ground water quality between eight landfill sites in western Michigan as a case study. Monitoring data were collected over a 15-year period on 36 parameters at an upgradient and downgradient well selected at each of the eight sites. This yielded a total of 576 monitoring data sets available for analysis. New trend and contamination indices are introduced that are used to compare ground water contamination between these eight sites. These indices are used to assess each landfill's relative potential for environmental harm.
Many questions remain unanswered, but what is demonstrated here is that this type of methodology has the potential to be used to assess trends of ground water chemistry concentrations at landfill sues in a region. A specific purpose of such an assessment could be to provide a quantified basis for the prioritization of funds allocated for cleanup of contaminated landfill sites. Having a technical capability to reduce large amounts of ground water monitoring data to appropriate summaries, which then can be used to assess environmental contamination between several sites, could also have important economic and health implications in other settings. Hopefully this paper will encourage further development of such technologies for these purposes.  相似文献   

13.
State-of-the-art analytical techniques are capable of detecting contamination In the part per billion (ppb) range or lower. At these levels, a truly representative ground water sample Is essential to precisely evaluate ground water quality. The design specifications of a ground water monitoring system are critical in ensuring the collection of representative samples, particularly throughout the long-term monitoring period.
The potential interfaces from commonly used synthetic well casings require a thorough assessment of site, hydrogeology and the geochemical properties of ground water. Once designed, the monitoring system must be installed following guidelines that ensure adequate seals to prevent contaminant migration during the installation process or at some time in the future. Additionally, maintaining the system so the wells are in hydraulic connection with the monitored zone as well as periodically Inspecting the physical integrity of the system can prolong the usefulness of the wells for ground water quality. When ground water quality data become suspect due to potential interferences from existing monitoring wells, an appropriate abandonment technique must be employed to adequately remove or destroy the well while completely sealing the borehole.
The results of an inspection of a monitoring system comprised of six 4-inch diameter PVC monitoring wells at a hazardous well facility Indicated that the wells were improperly installed and in some cases provided a pathway for contamination. Subsequent down hole television inspections confirmed inaccuracies between construction logs and the existing system as well as identified defects in casing materials. An abandonment program was designed which destroyed the well casings in place while simultaneously providing a competent seal of the re-drilled borehole.  相似文献   

14.
The municipal landfill at the Complexe Environnemental de Saint-Michel (CESM) in Montreal, which is the third largest in North America, is located in a former quarry in fractured limestone. Impressive measures are taken to monitor and control biogas and leachate generated at the site. Leachate containment is presently performed with a pumping well completed within the waste. The efficiency of the well in controlling off-site leachate migration is questioned because field observations strongly suggest that the nearby former Francon quarry is diverting local ground water flow. To address this issue, four additional hydraulic control options are considered: (1) increased pumping at the existing waste well; (2) new pumping wells in the rock on the eastern limit of the site; (3) new injection wells in the rock on the eastern limit; and (4) combination of new injection wells at the same location and new water supply wells upgradient of the landfill. We evaluated the four hydraulic control options at the CESM using two coupled models: (1) a decision model based on an objective function weighting the risk, costs, and benefits of each option translated into dollar units; and (2) a numerical ground water flow model to represent the effect of operational conditions and ascertain success. Decision analysis offers a quantitative unbiased tool to evaluate the potential and relative cost of each option, but qualitative considerations and judgment still must be used for a complete evaluation. Our analysis confirms that scenario 4, which was the intuitively favored option, represents the best containment strategy.  相似文献   

15.
The presence of stones, solid waste, and other obstructions can deflect small-diameter driven wells during installation, leading to deviations of the well from its intended position. This could lead to erroneous results, especially for measurements of ground water levels by water level meters. A simple method was developed to measure deviations from the intended positions of well screens and determine correction factors required for proper measurement of ground water levels in nonvertical wells. The method is based upon measurement of the hydrostatic pressure in the bottom of a water column, which is established in the well lube. The method was used to correct water level measurement in wells driven through a landfill site. Errors of up to 27 cm in water level were observed at the landfill site. The correction of the water level measurements had a significant effect on estimated local ground water flow directions.  相似文献   

16.
Lowbush blueberries, native to eastern Canada and Maine, are an important economic crop in these areas. Herbicides containing the active ingredient hexazinone are commonly applied to blueberry fields, and there is a high frequency of detection of relatively low concentrations of hexazinone in domestic wells located close to areas of lowbush blueberry production. The objective of this study was to determine the long-term impacts from hexazinone-based herbicide use on ground water quality in the immediate growing areas.
Physical and chemical hydrogeologic data were collected for an outwash sand and gravel aquifer in southwestern New Brunswick, Canada. The majority of the land overlying the aquifer is devoted to lowbush blueberry production. Twenty-one nested monitoring wells were sampled for hexazinone and hexazinone metabolites over a four-year period. Hexazinone was consistently detected at values of 1 to 8 parts per billion (ppb) in all but two of these wells, one that is upgradient of herbicide applications, and one that is downgradient with anoxic conditions. Hexazinone metabolites B and A1 were also detected in all but two of the 21 wells at values ranging from 0.5 to 2.5 ppb. The hexazinone and metabolite data suggest both aerobic and anaerobic degradation of hexazinone. Complete degradation of hexazinone appears to occur only in the one downgradient well exhibiting anoxic ground water conditions. Concentrations of hexazinone and its metabolites in the ground water were essentially constant over the four-year period.  相似文献   

17.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

18.
The Geo Flowmeter is manufactured by K.V. Associates of Falmouth, Massachusetts, and is used to determine ground water flow direction and velocity in monitoring wells or open boreholes. It operates by emitting heat pulses and measuring subsequent temperature increases carried by the ground water movement. The meter can be used in wells as small as 2 inches in diameter and only a single well is required for determination of ground water flow direction and rate.
This paper is a case history of the use of the Geo Flowmeter in a complex hydrogeologic setting consisting of a partially above grade landfill located between a navigable waterway and a large storm water impoundment basin. Mounding effects of the landfill, tidal changes in the channel, varying water levels in the impoundment basin and a complex substrate (alternating layers of sand, silt and clay) presented a challenge for ground water interpretation and analysis. The Geo Flowmeter was lowered into existing monitoring wells surrounding the landfill to determine ground water flow direction and rate. Sensitivity of the meter was sufficient to distinguish two separate flow directions in a single well screen. Later investigation involving installation of piezometers, long-term ground water level monitoring and plotting of ground water contours verified initial findings of the meter.
This article presents numerous graphs and pictures to illustrate field use of the instrument and discusses advantages and disadvantages of its use. Actual field data collected is included to provide a basis for evaluating the accuracy of the instrument and identifying situations where it may be used.  相似文献   

19.
Benzene, toluene and xylenes (BTX) were detected in ground water during a contaminant hydrogeological investigation of a landfill site. The landfill site was situated on approximately 10m (33 ft) of clay and glacial till overburden soils, which were underlain by a shaly limestone bedrock. The top part of the bedrock was the regional aquifer in the study area. Initial thoughts were that the landfill was the source of the BTX. However, the BTX was detected in ground water a considerable distance from the known extent of the leachate plume. Subsequent detailed analysis of rock cores showed the BTX could be leached from bituminous layers of shale that were interbedded in limestone. Rock core testing included gas chromatograph (GC) analysis of organic free reagent water used for leaching tests, flame ionization detection on a solvent used for leaching tests and thermal desorption analysis of the solid rock. The naturally occurring BTX, along with the presence of brackish ground water in the shaly bedrock, made it difficult to identify ground water contamination emanating from the landfill. Thus, the presence of BTX should not be considered definitive evidence of ground water contamination in certain sedimentary rock aquifers.  相似文献   

20.
Investigations of geology, hydrogeology, and ground water chemistry in the aquifer downgradient from Sjoelund Landfill, Denmark, formed the basis for an evaluation of natural attenuation as a remediation technology for phenoxy acid herbicides at the site. Concentrations of phenoxy acids were up to 65 μg/L in the ground water, primarily 4-chlor-2-methylphenoxypropionic acid (MCPP) and 2,4-dichlorophenoxypropionic acid (dichlorprop). Mass removal of the phenoxy acids was shown within 50 to 100 m of the landfill by calculation of contaminant fluxes passing transects at three distances. There was accordance between increasing oxygen concentrations and decreasing phenoxy acid concentrations with distance from the landfill, indicating that aerobic degradation was a major mass removal process. Presence of high concentrations of putative anaerobic phenoxy acid metabolites suggested that anaerobic degradation was also occurring. Laboratory degradation experiments using sediment and ground water from the aquifer supported aerobic and anaerobic degradability of MCPP at the site. It was concluded that natural attenuation may be applicable as a remedy for the phenoxy acids at the Sjoelund Landfill site, although uncertainties related to calculations of chloride and phenoxy acid fluxes at a complex site and identification of specific in situ indicators were encountered. Thus, there is a pronounced need for development and broader experience with evaluation tools for natural attenuation of phenoxy acids, such as specific metabolites, changes in enantiomeric fractions, compound-specific stable carbon isotope ratios, or microbial fingerprints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号