首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sen-sitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean tempera-ture is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.  相似文献   

2.
3.
This study evaluates the equilibrium response of a coupled ocean–atmosphere model to the doubling, quadrupling, and halving of CO2 concentration in the atmosphere. Special emphasis in the study is placed upon the response of the thermohaline circulation in the Atlantic Ocean to the changes in CO2 concentration of the atmosphere. The simulated intensity of the thermohaline circulation (THC) is similar among three quasi-equilibrium states with the standard, double the standard, and quadruple the standard amounts of CO2 concentration in the atmosphere. When the model atmosphere has half the standard concentration of CO2, however, the THC is very weak and shallow in the Atlantic Ocean. Below a depth of 3 km, the model oceans maintain very thick layer of cold bottom water with temperature close to –2 °C, preventing the deeper penetration of the THC in the Atlantic Ocean. In the Circumpolar Ocean of the Southern Hemisphere, sea ice extends beyond the Antarctic Polar front, almost entirely covering the regions of deepwater ventilation. In addition to the active mode of the THC, there exists another stable mode of the THC for the standard, possibly double the standard (not yet confirmed), and quadruple the standard concentration of atmospheric carbon dioxide. This second mode is characterized by the weak, reverse overturning circulation over the entire Atlantic basin, and has no ventilation of the entire subsurface water in the North Atlantic Ocean. At one half the standard CO2 concentration, however, the intensity of the first mode is so weak that it is not certain whether there are two distinct stable modes or not. The paleoceanographic implications of the results obtained here are discussed as they relate to the signatures of the Cenozoic changes in the oceans.An erratum to this article can be found at  相似文献   

4.
A physical model was developed for describing the thermal environment of ponded shallow water as a model for rice fields in relation to climatic conditions. The model was used to assess probable effects of CO2-induced warming on the thermal conditions of ponded shallow water. It was assumed that an altered equilibrium climate was produced by atmospheric CO2 which was twice that of present levels. The 1951–80 climatic means of Japan were used as baseline data. Water temperature and energy balance characteristics predicted from the model were compared between both climates. The most notable results were that water temperature under CO2 doubling rose 2 to 4 °C. These increases in temperature would induce a remarkable northward shift of the 15 °C isotherm which characterizes the isochrone of safe transplanting dates for rice seedlings. CO2-warming would have a considerable influence on the energy balance characteristics, intensifying the evaporation rate from the water surface. Changes in thermal conditions of rice fields due to CO2-induced climatic warming are, therefore, expected to bring about significant effects on aquatic environments and the life forms they support.  相似文献   

5.
The National Center for Atmospheric Research (NCAR) regional climate model (RegCM2), together with initial conditions and time-dependent lateral boundary conditions provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM), has been used to investigate the mechanism of ground warming over the Tibetan Plateau (TP). The model results show that when CO2 in the atmosphere is doubled, a strong ground warming occurs in the TP. Two regions within it with the largest warming are in the eastern TP (region I) and along the southwestern and western slopes (region II). Moreover, in region I the ground warming in the winter half year is stronger than that in the summer half year, but in region II the warming difference between the seasons becomes opposite to that in region I, i.e., the warming is strong in the summer half year and weak in the winter half year. There are indications that the summer monsoon enhances but the winter monsoon weakens when CO2 is doubled. A strong elevation dependency of ground warming is found in region I for the winter half year, and in region II for both winter and summer half years at elevations below 5 km. The simulated characteristics of ground warming in the TP are consistent with the observations. In region I, when CO2 is doubled, the cloud amount increases at lower elevations and decreases at higher elevation for the winter half year. As a consequence, at lower elevations the short wave solar radiation absorbed at the surface declines, and the downward long wave flux reaching the surface enhances; on the other hand, at higher elevations the surface solar radiation flux increases and the surface infrared radiation flux shows a more uniform increase. The net effect of the changes in both radiation fluxes is an enhanced surface warming at higher elevations, which is the primary cause of the elevation dependency in the surface warming. In the summer half year the cloud amount reduces as a result of doubling CO2 in region I for all elevations, and there is no elevation dependency detected in the ground warming. Furthermore, there is little snow existing in region I for both summer and winter half years, and the impact of snow-albedo feedback is not significant. In region II, although the changes in the cloud amount bear a resemblance to those in region I, the most significant factor affecting the surface energy budget is the depletion of the snow cover at higher elevations, which leads to a reduction of the surface albedo. This reduction in turn leads to an enhancement in the solar radiation absorbed in the surface. The snow-albedo feedback mechanism is the most essential cause of the elevation dependency in the surface warming for region II.  相似文献   

6.
7.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

8.
巢纪平  李耀锟 《气象学报》2010,68(2):147-152
利用一个考虑了辐射能传输的二维能量平衡气候模式,解析地分析了二氧化碳浓度改变后冰界纬度的变化,得到了冰界纬度随CO2浓度变化的关系以及全球平均温度的变化曲线.结果表明,当CO2浓度由工业革命前的280×10-6增加到700×10-6时,冰界仅后退(北半球向北)几个纬度;当CO2的浓度继续增加时,冰界纬度会加速向极地退缩,直至出现全球无极冰覆盖的现象.同样地,当CO2浓度由280×10-6增加到700×10-6时,全球地表平均温度虽然在增加,但增加的速率很小,并且增加的速率在减小,而当大于700×10-6之后,温度增加的速率会快速增大,温度将加速上升.对不同反照率进行敏感性试验,发现当反照率从0.1到0.32时,结果并没有显著地改变,即结果对反照率的变化并不敏感.这一计算结果表明,在目前的状态下,由CO2引起的增温作用似乎处于变化很小的准饱和状态,即目前气候不会因为CO2浓度的增加而迅速变暖.较为实际的情形可能是大气温度在缓慢增加到一定程度后才会迅速升高.这并不意味着可以忽视CO2的增温效应,因为根据计算结果,这个临界值大概在700×10-6左右,当CO2浓度增加到超过临界值之后,气温会剧烈上升,气候将会处在一个非常温暖的阶段.  相似文献   

9.
This article is a review of the modeling of potential CO2 effects on climate, intended for an interdisciplinary audience of mathematically oriented scientists and engineers. The carbon dioxide (CO2) content of the atmosphere has shown a systematic increase each year since regular measurements began in 1958. A major source of CO2 is the combustion of fossil fuels. A number of studies of the sensitivity of climate to increases in the CO2 content of the atmosphere have been published. This report is an assimilation of the results of some of these studies. The climate sensitivity problem is introduced through a discussion of the various atmospheric feedbacks and the ice albedo feedback. The most recent estimates of the various feedbacks are used to estimate upper and lower bounds of the globally averaged temperature increase that would accompany a doubling of atmospheric CO2 content. The results of a CO2 doubling experiment using a simple general circulation model are reviewed, and the possible response of the cryosphere is discussed.  相似文献   

10.
海陆气耦合模式,是用来定量描述过去气候变化的成因和预报未来气候变化的唯一数学工具。由于大气反馈过程的差异,特别是云辐射反馈的差异,这些模式对外强迫的平衡态响应有相当大的差异。然而,参加政府间气候变化专门委员会(Inter-governmental Panel on Climate Change,IPCC)第4次评估报告(Assessment Report,AR4)的所有耦合模式,对20世纪气候的模拟结果均非常相似。本文研究了这种相似性的产生原因及启示。结果表明,若大气反馈越大,则气候对外强迫的响应时滞越长、与深海的热交换越多、模式中海洋涌升流的影响越大。这3种同样重要的物理机制共同作用,降低了瞬变气候变化对模式差异的敏感性;然而,在较长的时间尺度上,模式间大气反馈过程差异将在多个方面显现出来  相似文献   

11.
Results from a global coupled ocean-atmosphere general circulation model (GCM) are used to perform the first in a series of studies of the various time and space scales of climate anomalies in an environment of gradually increasing carbon dioxide (CO2) (a linear transient increase of 1% per year in the coupled model). Since observed climate anomaly patterns often are computed as time-averaged differences between two periods, climate-change signals in the coupled model are defined using differences of various averaging intervals between the transient and control integrations. Annual mean surface air temperature differences for several regions show that the Northern Hemisphere warms faster than the Southern Hemisphere and that land areas warm faster than ocean. The high northern latitudes outside the North Atlantic contribute most to global warming but also exhibit great variability, while the high southern latitudes contribute the least. The equatorial tropics warm more slowly than the subtropics due to strong upwelling and mixing in the ocean. The globally averaged surface air temperature trend computed from annual mean differences for years 23–60 is 0.03 C per year. Projecting this trend to the time of CO2 doubling in year 100 produces a warming of 2.3° C. By chance, one particular northern winter five-year average geographical difference pattern in the Northern Hemisphere from the coupled model resembles the recent observed pattern of surface temperature and sea-level pressure anomalies. This pattern is not consistent from one five-year period to the next in any season in the model. However, multidecadal averages in the coupled model show that the North Atlantic warms less than the rest of the high northern latitudes, and recent observations may be a manifestation of this phenomenon. Consistent geographic patterns of climate anomalies forced by increased CO2 in the model are more evident with a longer averaging interval. There is also the possibility that the CO2 climate-change signal may itself be a function of time and space. The general pattern of zonal mean temperature anomalies for all periods in the model shows warming in the troposphere and cooling in the stratosphere. This pattern (or one similar to it taking into account the rest of the trace gases) could be looked for in observations to verify the enhanced greenhouse effect. A zonal mean pattern, however, could prove scientifically satisfactory but of little value to policymakers seeking regional climate-change forecasts. These results from the coupled model underscore the difficulty in identifying a time- and space-dependent fingerprint of greenhouse warming that has some practical use from short climatic records and point to the need to understand the mechanisms of decadal-scale variability.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
A method is described for the analysis of the interannual variability of background atmospheric carbon dioxide concentration. The analysis is carried out on the data from 6 observatories for which records of >8 years were available.A global-scale interannual variation of CO2 concentration in the troposphere with a characteristic time-scale of 2–3 years has been confirmed throughout the period of the records. These variations are estimated to be associated with carbon cycle imbalances of 2–3 Gt or annual net exchanges between the atmosphere and another carbon reservoir(s) at a rate of about 1.2 Gt of carbon per year. Lag correlations and amplitude comparisons between the records suggests a low latitude southern hemisphere origin to this phenomenon.The interannual variations of CO2 increase are found to be correlated with those observed in data for Pacific sea surface temperatures and Pacific witd stress, the Southern Oscillation Index and the Quasi-Biennial Oscillation. However multiple regression studies found that once the Southern Oscillation index is used as an explanatory variable for CO2 variations, the inclusion of additional geophysical variables does not give any significant improvement in the regression.  相似文献   

13.
张学洪 《大气科学》1990,14(4):490-496
本文以海洋在CO_2引起的增暖事件中的作用为线索,评介了近几年来国外利用大洋环流模式和海-气耦合模式所进行的若干研究工作,其中包括海洋对大气热异常的响应,海洋热输送作用对模式气候敏感性的影响,热异常向海洋中渗透的物理机制,和海-气耦合模式对CO_2增加的平衡响应,以及对于CO_2突然增加和逐渐增加的两类迁延响应的差异。  相似文献   

14.
Over three years, we found a consistent CO2 efflux from forest tundra of the Russian North throughout the year, including a large (89 g C m–2 yr–1) efflux during winter. Our results provide one explanation for the observations that the highest atmospheric CO2 concentration and greatest seasonal amplitude occur at high latitudes rather than over the mid-latitudes, where fossil fuel sources are large, and where high summer productivity offset by winter respiration should give large seasonal oscillations in atmospheric CO2. Winter respiration probably contributed substantially to the boreal winter CO2 efflux. Respiration is an exothermic process that produces enough heat to warm soils and promote further decomposition. We suggest that, as a result of this positive feedback, small changes in surface heat flux, associated with human activities in the North or with regional or global warming, could release large quantities of organic carbon that are presently stored in permafrost.  相似文献   

15.
An intercomparison of eight EMICs (Earth system Models of Intermediate Complexity) is carried out to investigate the variation and scatter in the results of simulating (1) the climate characteristics at the prescribed 280 ppm atmosphere CO2 concentration, and (2) the equilibrium and transient responses to CO2 doubling in the atmosphere. The results of the first part of this intercomparison suggest that EMICs are in reasonable agreement with the present-day observational data. The dispersion of the EMIC results by and large falls within the range of results of General Circulation Models (GCMs), which took part in the Atmospheric Model Intercomparison Project (AMIP) and Coupled Model Intercomparison Project, phase 1 (CMIP1). Probable reasons for the observed discrepancies among the EMIC simulations of climate characteristics are analysed. A scenario with gradual increase in CO2 concentration in the atmosphere (1% per year compounded) during the first 70 years followed by a stabilisation at the 560 ppm level during a period longer than 1,500 years is chosen for the second part of this intercomparison. It appears that the EMIC results for the equilibrium and transient responses to CO2 doubling are within the range of the corresponding results of GCMs, which participated in the atmosphere-slab ocean model intercomparison project and Coupled Model Intercomparison Project, phase 2 (CMIP2). In particular EMICs show similar temperature and precipitation changes with comparable magnitudes and scatter across the models as found in the GCMs. The largest scatter in the simulated response of precipitation to CO2 change occurs in the subtropics. Significant differences also appear in the magnitude of sea ice cover reduction. Each of the EMICs participating in the intercomparison exhibits a reduction of the strength of the thermohaline circulation in the North Atlantic under CO2 doubling, with the maximum decrease occurring between 100 and 300 years after the beginning of the transient experiment. After this transient reduction, whose minimum notably varies from model to model, the strength of the thermohaline circulation increases again in each model, slowly rising back to a new equilibrium.  相似文献   

16.
17.
18.
19.
The climate, as represented by the mean Northern Hemisphere temperature, has shown substantial changes within the past century. The temperature record is utilized as a means of elucidating the relative importance of anthropogenic CO2 increase, volcanic aerosols, and possible solar insolation variations in externally forcing climate changes. Solar luminosity variations, suggested by observed solar radius variations on an ≈ 80 yr time scale, allow a self-consistent explanation of the hemispheric temperature trends. Evidence for solar influences on the climate is also found on the shorter 11 and 22 yr time scales present in solar activity cycles. The author is a staff scientist at the High Altitude Observatory, P.O. Box 3000, Boulder, CO 80307, of the National Center for Atmospheric Research. This work was completed while the author was a postdoctoral fellow in the Advanced Study Program of NCAR. Any opinions, findings and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16×CO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (??precipitation-wind paradox??). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号