首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of impulsive solar flare X-rays 10 keV by the OGO-5 satellite and the measurements of energetic solar electrons made with the Explorer-35 and Explorer-41 (IMP-5) satellites during the period March 1968–September 1969 have been analyzed in order to determine the ion density in the X-ray source region as well as the location of the electron acceleration region in the solar atmosphere. If we assume that the efficiency of escape of the accelerated electrons into interplanetary space is 10–3, the observations are found to be consistent with the following interpretation: (i) the ion density in the X-ray source region varies from event to event and lies between 109 and 1011 ions cm–3 for those events in which the impulsive X-ray emission could be detected; (ii) for those events in which no impulsive emission was detected above threshold, the ion density in the X-ray source was < 109 ions cm–3; (iii) at least in some small solar flares the region where the electrons are accelerated during the flash phase is located in the lower corona.  相似文献   

2.
We propose a new two-stage model for acceleration of electrons in solar flares. In the first stage, electrons are accelerated stochastically in a post-reconnection turbulent downflow. The second stage is the reprocessing of a subset of these electrons as they pass through a weakly compressive fast shock above the apex of the closed flare loop on their way to the chromosphere. We call this the 'shock-reprocessing' model. The model reproduces the sign and magnitude of the energy-dependent arrival time delays for both the pulsed and smooth component of impulsive solar flare X-rays, but requires either enhanced cooling or the presence of a loop-top trap to explain the concavity of the observed time delay energy relation for the smooth component. The model also predicts an emission site above the loop-top, as seen in the Masuda flare. The loop-top source distinguishes the shock-reprocessing model from previous models. The model makes testable predictions for the energy dependence of footpoint pulse strengths and the location and spectrum of the loop-top emission, and can account for the observed soft-hard-soft trend in the spectral evolution of footpoint emission. The model also highlights the concept that magnetic reconnection provides an environment which permits multiple acceleration processes. Which combination of processes operates within a particular flare may depend on the initial conditions that determine, for example, whether the reconnection downflow is turbulent or laminar. The shock-reprocessing model comprises one such combination.  相似文献   

3.
For the period September 1978 to December 1982 we have identified 55 solar flare particle events for which our instruments on board the ISEE-3 (ICE) spacecraft detected electrons above 10 MeV. Combining our data with those from the ULEWAT spectrometer (MPI Garching and University of Maryland) electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (&#x003C;1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (&#x003c;1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.  相似文献   

4.
Lin  R. P. 《Solar physics》1987,113(1-2):217-220

We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (≲1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting ∼3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to ≳100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically ∼102 kV compared to ∼10 kV for auroral substorms.

  相似文献   

5.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

6.
Loukas Vlahos 《Solar physics》1989,121(1-2):431-447
Particle acceleration during solar flares is a complex process where the main actors (Direct (D.C.) or turbulent electric fields) are hidden from us. It is easy to construct a successful particle accelertion model if we are allowed to impose on the flaring region arbitrary conditions (e.g., strength and scale length of the D.C. or turbulent electric fields), but then we have not solved the acceleration problem; we have simply re-defined it. We outline in this review three recent observations which indicate that the following physical processes may happen during solar flares: (1) Release of energy in a large number of microflares; (2) short time-scales; (3) small length scales; and (4) coherent radiation and acceleration sources. We propose that these new findings force us to reformulate the acceleration process inside a flaring active region assuming that a large number of reconnection sites will burst almost simultaneously. All the well-known acceleration mechanisms (electric fields, turbulent fields, shock waves, etc.) reviewed briefly here, can be used in a statistical model where each particle is gaining energy through its interaction with many small reconnection sites.  相似文献   

7.
The data on optical, X-ray and gamma emission from proton flares, as well as direct observations of flare-associated phenomena, show energetic proton acceleration in the corona rather than in the flare region. In the present paper, the acceleration of protons and accompanying relativistic electrons is accounted for by a shock wave arising during the development of a large flare. We deal with a regular acceleration mechanism due to multiple reflection of resonance protons and fast electrons from a collisionless shock wave front which serves as a moving mirror. The height of the most effective acceleration in the solar corona is determined. The accelerated particle energy and density are estimated. It is shown in particular that a transverse collisionless shock wave may produce the required flux of protons with energy of 10 MeV and of relativistic electrons of 1–10 MeV.The proposed scheme may also serve as an injection mechanism when the protons are accelerated up to relativistic energies by other methods.  相似文献   

8.
We show that protons can be accelerated to several GeV in 10 s by Alfven turbulence whose energy density is greater than a few erg/cm3. We also show that electrons can be accelerated to tens of MeV on similar time scales by whistler and Alfven turbulence.  相似文献   

9.
Miller  James A.  Ramaty  Reuven 《Solar physics》1987,113(1-2):195-201
Solar Physics - We show that protons can be accelerated to several GeV in ≲10 s by Alfven turbulence whose energy density is greater than a few erg/cm3. We also show that electrons can be...  相似文献   

10.
As a possible mechanism for particle acceleration in the impulsive phase of solar flares, a new particle acceleration mechanism in shock waves is proposed; a collisionless fast magnetosonic shock wave can promptly accelerate protons and electrons to relativistic energies, which was found by theory and relativistic particle simulation. The simultaneous acceleration of protons and electrons takes place in a rather strong magnetic field such that ce pe . For a weak magnetic field ( ce pe ), strong acceleration occurs to protons only. Resonant protons gain relativistic energies within the order of the ion cyclotron period (much less than 1 s for solar plasma parameters). The electron acceleration time is shorter than the ion-cyclotron period.  相似文献   

11.
Second-step acceleration of nonrelativistic protons and ions in impulsive solar flares is discussed extending our earlier calculations for relativistic electrons. We derive the relevant particle transport equation, discussing in detail the influence of the particle's effective charge and mass number on the various momentum gain (stochastic acceleration, diffusive shock wave acceleration) and loss (Coulomb interactions, particle escape) processes. Analytical solutions for the ion-momentum spectra in the hard-sphere approximation are given. The inclusion of Coulomb losses modify the particle spectra significantly at kinetic energies smaller than E B = 0.64( e /5.0) MeV nucl.–1 from the well-known Bessel function variation in long-duration flares. For equal injection conditions this modification explains the observed much smaller ion fluxes from impulsive flares at high energies as compared to long-duration flares. We also calculate the 3He/4He-isotope variation as a function of momentum in impulsive flares in the hard-sphere approximation and find significant variations near E m = 0.38(T e /2 × 106 K) MeV nucl.–1, where T e is the electron temperature of the coronal medium.  相似文献   

12.
A model for second-step electron acceleration in impulsive solar flares is presented. We have extended the theory of stochastic particle acceleration to include Coulomb energy losses which become important at low coronal heights. This inclusion successfully explains the observed steepening of interplanetary electron spectra below 3 MeV following impulsive solar flares taking place at low coronal heights. It also explains the observed spectral differences of relativistic electrons in long-duration and impulsive flares.  相似文献   

13.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

14.
The generation of lower-hybrid waves by cross-field currents is applied to reconnection processes proposed for solar flares. Recent observations on fragmentation of energy release and acceleration, and on hard X-ray (HXR) spectra are taken into account to develop a model for electron acceleration by resonant stochastic interactions with lower-hybrid turbulence. The continuity of the velocity distribution is solved including collisions and escape from the turbulence region. It describes acceleration as a diffusion process in velocity space. The result indicates two regimes that are determined by the energy of the accelerating electrons which may explain the double power-law often observed in HXR spectra. The model further predicts an anticorrelation between HXR flux and spectral index in agreement with observations.  相似文献   

15.
The overabundance of heavy nuclei in solar cosmic rays of energy ?10 Me/nucleon (sometimes up to ?30 MeV/nucleon is explained by taking into account the pre-flare ionization states of these nuclei in the region where they are accelerated. A model is proposed which considers two-step accelerations associated with the initial development of solar flares. The first step is closely related to the triggering process of flares, while the second one starts with the development of the explosive phase. Further ionization of medium and heavy nuclei occurs through their interaction with keV electrons accelerated by the first-step acceleration. It is suggested that the role of these electrons is important in producing fully ionized atoms in the acceleration regions.  相似文献   

16.
The possibility of accelerated protons in solar flares having a sharp change in their spectral index is discussed. The analysis is based on the Tsytovich (1982, 1984, 1987a, b, c) acceleration model by MHD turbulence, which is shown to have different resonant conditions for non-relativistic and relativistic particles. The different resonant condition is shown to result in a sharp change in the accelerated proton spectral index, even in the absence of any peculiarity in the spectra of the MHD turbulence. Time scales for accelerated protons to relativistic energies are also derived, and shown to be consistent with observations. We also show that the threshold energy for electron acceleration by low frequency MHD turbulence is much greater than for proton acceleration. The turbulence therefore preferentially accelerates protons.  相似文献   

17.
We find that gamma-ray line (GRL) emissions start later than the hard X-ray (HXR) emissions during impulsive and extended solar flares. Starting delay is more in the case of extended solar flares suggesting a slow acceleration of electrons and ions, in comparison to impulsive solar flares which indicate different acceleration mechanism for impulsive and extended solar flares. We further infer that during solar flares, electrons and ions are accelerated simultaneously and the delay between HXR and GRL emissions results mainly due to differences in acceleration times of electrons and ions to attain energies required for producing HXR emissions for electrons and GRL emissions for ions. Therefore, we are of view that a single step acceleration mechanism may work in solar flares.  相似文献   

18.
Electron bombardment of the solar atmosphere has two effects: one is to enhance hydrogen recombination emission, the other is to increase the opacity via an increase of H population. The first effect is the most important in the upper part of the atmosphere and the second in the lower part. We predict that, when enhanced absorption dominates in the part of the atmosphere where radiation originates, there will be a decrease in the white-light emission, leading to a negative flare, or what we call a Black-Light Flare. This phenomenon occurs only for a short duration, not more than 20 s. Black-Light Flares have already been observed in the case of flare stars and we suggest here that they could also be present on the Sun, just prior to a White-Light Flare.Also Dept. of Physics and Astronomy, University of Glasgow, Scotland.Also Sterrekundig Instituut, Rijksuniversiteit te Utrecht, The Netherlands.Also Heliophysical Observatory of the Hungarian Academy of Sciences, Debrecen, Hungary.  相似文献   

19.
Yung Mok 《Solar physics》1985,95(1):181-188
The microscopic stability of an electron stream flowing down to the photosphere from the corona is examined. It is found that, while a power-law distribution is stable in the low-density corona, it is unstable against the generation of magnetized electron plasma waves in the high-density photosphere. The scattering of these energetic electrons may alter their radiation signatures.  相似文献   

20.
Evidence for a delayed acceleration process in solar flares is presented in the form of an analysis of simultaneous observations in microwaves, decimetre and metrewaves, and hard X-rays of six delayed gradual bursts which appear 0.5–1 hr after the strong main bursts have faded. The observed characteristics of the delayed bursts are: (a) similarity of flux time profiles at all the wavelengths, (b) low turn-over frequency (4 GHz) of the microwave spectrum, (c) moderately strong circular polarization (30–40%) and low altitude of the microwave source (which is displaced toward the disk centre by a projected distance of 10–20 from that of the preceding main burst), and (d) low spectral index of the energy spectrum of hard X-rays.From these observations it is suggested that (i) electrons are accelerated up to MeV even some tens of minutes after the impulsive phase acceleration has almost ceased, (ii) the delayed acceleration occurs in a large magnetic structure extending to a height of at least 2 × 105 km, and (iii) the radio source has columnar structure with the microwave source predominantly near a leg or legs and the metrewave source near the top of the magnetic structure. The present observations of the delayed bursts do not seem to be consistent with the classical second-phase acceleration mechanism proposed in the past for normal hard X-ray gradual (extended) bursts.Minamimaki-mura, Minamisaku-gun, Nagano-ken 384-13, Japan.Greenbelt, MD 20771, U.S.A., NASA/NRC Research Associate, on leave from Tokyo Astronomical Observatory.P.O. Box 76, Epping, N.S.W. 2121, Australia.Berkeley, CA 94720, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号