首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

2.
We studied the spectral properties of the electron cyclotron maser emission generated by anisotropic distributions of fast electrons with power-law magnitude distributions in solar flares. The natural bandwidth of the generated spectral line depends significantly on the angle between the direction of the wave emission and the direction of the magnetic field in the source. In addition, the line bandwidth depends on the parameters of the momentum and pitch-angle distribution functions for fast electrons. The typical spectral bandwidths are shown to lie within the range 0.1–0.4%, in agreement with the minimum observable bandwidths of millisecond solar radio spikes.  相似文献   

3.
A dispersion relation which takes into account the nonuniformity of the magnetic field as well as the plasma density along the field lines is obtained for an electrostatic wave propagating parallel to the magnetic field. This dispersion relation is solved for a particular case in which a group of electrons with a monochromatic distribution in magnetic moment is mixed with a low energy plasma. Such electrons are shown to excite ion acoustic waves carried by the low-energy plasma component near multiples of the bounce frequency of these electrons. The theoretical results are applied to explain electrostatic oscillations with a period of approximately fifty seconds observed in the high energy electron fluxes at synchronous altitude.  相似文献   

4.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   

5.
The analysis of the transition from the large-scale fluid regime to the short-scale kinetic range of wavelengths in the development of the turbulent cascade of energy is nowadays subject of fervent discussion in the space plasmas scientific community. We make use of Hybrid Vlasov-Maxwell simulations where the full kinetic dynamics of ions is taken into account, while electrons are treated as a fluid. We investigate the development of turbulence in the solar wind, in 1D-3V phase space configuration and in the frequency range across the ion cyclotron frequency. These simulations allow for the analysis of the role of kinetic effects in the short-scale region of the energy spectra in the direction parallel to the background magnetic field. Our numerical results show the presence of a significant electrostatic activity at small wavelengths, triggered by the resonant interaction of ions with longitudinal waves. Our model does not allow to take into account the evolution of the turbulent spectra in the plane perpendicular to the ambient field, due to limited dimensionality in phase space. On the other hand, this model permits to isolate and study the possibility of transferring the electromagnetic large-scale energy on the small-scale kinetic electrostatic component of the spectrum. Peculiar features observed in the spacecraft data in the solar wind are qualitatively reproduced within the hybrid-Vlasov model, such as the generation of perpendicular temperature anisotropy and accelerated longitudinal beams of ions in the distribution of particle velocities as well as the appearance of a marked peak of electrostatic activity in the short-scale termination of the turbulent spectra.  相似文献   

6.
A low-frequency wave is treated as a local oscillation to modulate the guiding center of electrons beam, which is considered as free energy to excite Alfvén waves by a kinetic plasma instability under low-frequency approximation. The nonlinearity of the model is shown by a critical value of the amplitude of the low-frequency wave, and Alfvén waves are growing in a broad turbulent spectrum with fractional harmonics, which strongly depend on the criterion. The instability is limited in the direction nearly perpendicular to the ambient magnetic field. The growth rates are very sensitive to the beam speed that perpendicular to the magnetic field, the propagational angle, and the magnetic field strength, but not sensitive to the beam speed parallel to the magnetic field. This model is used to explain the modulations with multiple timescales in the flare light curves at radio, hard X-ray and H-alpha bands.  相似文献   

7.
We have applied numerical simulations and modeling to the particle acceleration, magnetic field generation, and emission from relativistic shocks. We investigate the nonlinear stage of theWeibel instability and compare our simulations with the observed gamma-ray burst emission. In collisionless shocks, plasma waves and their associated instabilities (e.g., the Weibel, Buneman and other two-stream instabilities) are responsible for particle (electron, positron, and ion) acceleration and magnetic field generation. 3-D relativistic electromagnetic particle (REMP) simulations with three different electron-positron jet velocity distributions and also with an electron-ion plasma have been performed and show shock processes including spatial and temporal evolution of shocks in unmagnetized ambient plasmas. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-positron shocks are larger for smaller jet Lorentz factor. This comes from the fact that the growth time of the Weibel instability is proportional to the square of the jet Lorentz factor. We have performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which is assumed to be created by photon annihilation. Simulation results with this broad distribution show that the Weibel instability is excited continuously by the wide-range of jet Lorentz factor from lower to higher values. In all simulations the Weibel instability is responsible for generating and amplifying magnetic fields perpendicular to the jet propagation direction, and contributes to the electron’s (positron’s) transverse deflection behind the jet head. This small scale magnetic field structure contributes to the generation of “jitter” radiation from deflected electrons (positrons), which is different from synchrotron radiation in uniform magnetic fields. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks. The detailed studies of shock microscopic process evolution may provide some insights into early and later GRB afterglows.  相似文献   

8.
We report an observation of the radial profile of a Pc5 magnetic pulsation and the associated energetic electron flux oscillations from 10 to 18 Re, recorded by the IMP-5 satellite at 19.00 M.L.T. on 21 March 1970. The Pc5 pulsation was mainly compressional and occurred during extremely quiet geomagnetic conditions. Fluxes of energetic electrons detected above three energy thresholds (18, 45, and 80 keV) were found to oscillate out of phase with magnetic field intensity. One new result is that both the wave amplitude and the wave period increased with radial distance. Second, the electron flux oscillation amplitude was roughly proportional to magnetic field fluctuation amplitude and wave period. The wave event is found to be interpreted better as an ion drift wave because of lack of polarization reversal. The characteristics of energetic electron flux oscillations are shown to agree qualitatively with theoretical calculations of the kinetic perturbation of distribution functions by compressional waves.  相似文献   

9.
The energetics of the excitation of the Farley-Buneman instability is considered, which is recently observed in the auroral and equatorial E regions of the Earth's ionosphere at altitudes between 100 km and 120 km. In the magnetic field of the Earth the Farley-Buneman instability is excited under the condition of a strong enough external electric field in the case of ion-neutral collisions with frequencies much larger than the ion gyrofrequency and electron-neutral collisions with frequencies much below the electron gyrofrequency. It is shown that the linear increase of the wave amplitudes is caused by a small disbalance between the processes of nonlinear energy pumping into the wave from an external electric field and the energy loss because of the collisions of the electrons and ions with the neutral particles. During the nonlinear energy pumping energy of the external electric field is transferred into a nonlinear current of second order, which is connected with the oscillating motion of the electrons in the wave. The oscillating electron motion takes place perpendicular to wave propagation. From the estimations follows that the energy pumped into a Farley-Buneman wave during one period of pulsation is much larger than the wave energy itself. A new and simply to understand derivation of the anomalous diffusion coefficient is presented, related to the study of the behaviour of a test wave with frequency much above the frequencies of the Farley-Buneman turbulence in developed stage can cause an additional macroscopic nonlinear Pedersen current directed along the external electric field. It is found that the nonlinear Pedersen current can reach the order of the usual Pedersen current and should contribute to the effective heating of the ionospheric plasma.  相似文献   

10.
A new mechanism for the generation of the electric ring current is presented. During the radial bombardment of a rotating gas torus by a neutral beam, electrons and protons are dragged by rotating gas. Due to collisions electrons obtain the torus velocity faster than protons, therefore in some layer there is a difference in electron and proton beam toroidal velocities; the electric current is thus generated. This current is discussed as the seed magnetic field in early stages of evolving galaxies, which is then amplified by the dynamo process to present values of the magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
McDonald  L.  Harra-Murnion  L.K.  Culhane  J.L. 《Solar physics》1999,185(2):323-350
We analyse four solar flares which have energetic hard X-ray emissions, but unusually low soft X-ray flux and GOES class (C1.0–C5.5). These are compared with two other flares that have soft and hard X-ray emission consistent with a generally observed correlation that shows increasing hard X-ray accompanied by increasing soft X-ray flux. We find that in the four small flares only a small percentage of the nonthermal electron beam energy is deposited in a location where the heating rate of the electron beam exceeds the radiative cooling rate of the ambient plasma. Most of the beam energy is subsequently radiated away into the cool chromosphere and so cannot power chromospheric evaporation thus reducing the soft X-ray emission. We also demonstrate that in the four small flares the nonthermal electron beam energy is insufficient to power the soft X-ray emitting plasma. We deduce that an additional energy source is required, and this could be provided by a DC-electric field (where quasi-static electric field channels in the coronal loops accelerate electrons, and those electrons with velocity below a critical velocity will heat the ambient plasma via Joule heating) in preference to a loop-top thermal source (where heat flux deposited in the corona is conducted along magnetic field lines to the chromosphere, heating the coronal plasma and giving rise to further chromospheric evaporation).  相似文献   

12.
Requirements for the number of nonthermal electrons which must be accelerated in the impulsive phase of a flare are reviewed. These are uncertain by two orders of magnitude depending on whether hard X-rays above 25 keV are produced primarily by hot thermal electrons which contain a small fraction of the flare energy or by nonthermal streaming electrons which contain > 50% of the flare energy. Possible acceleration mechanisms are considered to see to what extent either X-ray production scenario can be considered viable. Direct electric field acceleration is shown to involve significant heating. In addition, candidate primary energy release mechanisms to convert stored magnetic energy into flare energy, steady reconnection and the tearing mode instability, transfer at least half of the stored energy into heat and most of the remaining energy to ions. Acceleration by electron plasma waves requires that the waves be driven to large amplitude by electrons with large streaming velocities or by anisotropic ion-acoustic waves which also require streaming electrons for their production. These in turn can only come from direct electric field acceleration since it is shown that ion-acoustic waves excited by the primary current cannot amplify electron plasma waves. Thus, wave acceleration is subject to the same limitations as direct electric field acceleration. It is concluded that at most 0.1% of the flare energy can be deposited into nonthermal streaming electrons with the energy conversion mechanisms as they have been proposed and known acceleration mechanisms. Thus, hard X-ray production above 10 keV primarily by hot thermal electrons is the only choice compatible with models for the primary energy release as they presently exist.  相似文献   

13.
Mars Express (MEX) does not carry its own magnetometer which complicates interpretation of ASPERA-3/MEX ion measurements. The direction of the interplanetary magnetic field (IMF) is especially important because it, among other things, determines the direction of the convective electric field and orientation of the cross tail current sheet and tail lobes. In this paper we present a case study to show the properties of the magnetic field near Mars in a quasi-neutral hybrid (QNH) model at the orbits where the Mars Global Surveyor (MGS) has made measurements, present a method to derive the IMF clock angle by comparing fields in a hybrid model and the direction of the magnetic field measured by MGS by deriving the IMF clock angle. We also use H+ ring velocity distribution observations upstream of the bow shock measured by the IMA/ASPERA-3 instrument on board MEX spacecraft. These observations are used to indirectly provide the orientation of the IMF. We use a QNH model (HYB-Mars) where ions are modeled as particles while electrons form a mass-less charge neutralizing fluid. We found that the direct MGS and non-direct IMA observations of the orientation magnetic field vectors in non-crustal magnetic field regions are consistent with the global magnetic field draping pattern predicted by the global model.  相似文献   

14.
Kosovichev  A.G.  Zharkova  V.V. 《Solar physics》1999,190(1-2):459-466
Using high-cadence magnetograms from the SOHO/MDI we have investigated variations of the photospheric magnetic field during solar flares and CMEs. In the case of a strong X-class flare of May 2, 1998, we have detected variations of magnetic field in a form of a rapidly propagating magnetic wave. During the impulsive phase of the flare we have observed a sudden decrease of the magnetic energy in the flare region. This provides direct evidence of magnetic energy release in solar flares. We discuss the physics of the magnetic field variations, and their relations to the Moreton Hα waves and the coronal waves observed by the EIT.  相似文献   

15.
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.  相似文献   

16.
E. Y. Zlotnik 《Solar physics》2013,284(2):579-588
Solar radio emission is a significant source of information regarding coronal plasma parameters and the processes occurring in the solar atmosphere. High resolution frequency, space, and time observations together with the developed theory make it possible to retrieve physical conditions in the radiation source and recognize the radiation mechanisms responsible for various kinds of solar radio emission. In particular, the high brightness temperature of many bursts testifies to coherent radiation mechanisms, that is, to plasma instabilities in the corona. As an example, the fine structure of solar radio spectra looking like a set of quasi-harmonic stripes of enhanced and lowered radiation, which is observed against the type IV continuum at the post-flare phase of activity, is considered. It is shown that such emission arises from a trap-like source filled with a weakly anisotropic equilibrium plasma and a small addition of electrons which have a shortage of small velocities perpendicular to the magnetic field. For many recorded events with the mentioned fine spectral structure the instability processes responsible for the observed features are recognized. Namely, the background type IV continuum is due to the loss-cone instability of hot non-equilibrium electrons, and the enhanced striped radiation results from the double-plasma-resonance effect in the regions where the plasma frequency f p coincides with the harmonics of electron gyrofrequency f B ; f p=sf B . Estimations of the electron number density and magnetic field in the coronal magnetic traps, as well as the electron number density and velocities of hot electrons necessary to excite the radiation with the observed fine structure, are given. It is also shown that in some cases several ensembles of non-equilibrium electrons can coexist in magnetic traps during solar flares and that its radio signature sensitively depends on the parameters of the distribution functions of the various ensembles.  相似文献   

17.
Starting from the idea that the electrons accelerated during a solar flare have originally a preferred direction, the angular distribution and the polarization of bremsstrahlung below 10 Å is calculated taking into account the influence of the magnetic field. The energy distribution of the nonthermal electrons is based on X-ray spectra measured by the Leicester group during flares in 1962 and 1967. In addition to the case of a fixed angle between the electron velocity and the magnetic field, an angular distribution of the form sin n is considered. The results may be used to test flare models. Recent measurements of the polarization of solar X-radiation yield the expected order of magnitude.Paper presented to the Int. Symp. on Solar-Terr. Phys., Leningrad, May 1970.  相似文献   

18.
We study motions of charged particles in reconnecting current sheets (CS) which have both transverse (perpendicular to the current sheet plane) and longitudinal (parallel to the electric current inside the sheet) components of the magnetic field. Such CS, called non-neutral, are formed in regions of magnetic field line reconnection in the solar atmosphere. We develop an analytical technique which allows us to reproduce previous results concerning the influence of transverse fields on particle motion and acceleration. This technique also allows us to evaluate the effect of the longitudinal field. The latter increases considerably the efficiency of particle acceleration in CS. The energizing of electrons during the main phase of solar flares can be interpreted as their acceleration in non-neutral CS.  相似文献   

19.
The Oppenheimer-Penney theory, as developed by Percival and Seaton (1958), is applied to calculate the polarization of resonance lines from Li-like ions. Two laws for the pitch-angle distribution of electrons around the magnetic field are accounted. The degrees of polarization are averaged over the energy of non-thermal electrons generated during the initial phase of solar flares. It is found that for the full space pitch-angle distribution, as adopted by Chandra and Joshi (1984), the degrees of polarization are nearly independent of the atomic number of ion. Whereas for the forward-come distribution used by Haug (1981), they depend on the choice of the free parameterE 0. The polarization of the resonance lines from Li-like ions is two times larger than that of the L radiations from H-like ions. Hence, under favourable conditions, it may be detected during solar flares.  相似文献   

20.
A generation mechanism for 1–30 Hz waves of the second category, observed near the plasmapause by Taylor and Lyons (1976), is suggested in terms of a resonant electron instability. The instability arises because of the resonant interaction between the ring current electrons outside the plasmapause and the ordinary mode drift waves. The instability can generate waves in the frequency range from 0.45 to 35.0 Hz in the region between L = 4.5 and 5.5. The instability can also explain satisfactorily the other properties such as no changes in the proton distributions, the direction of the wave magnetic field and the localization of the region of wave activity, associated with these waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号