首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Piezometers and wells installed for water quality monitoring are frequently used to assess the saturated hydraulic conductivity (K) in the surrounding formation. A series of recovery tests was conducted to evaluate how purging, required to obtain representative water quality samples, affected measured values of hydraulic conductivity in 15 newly installed and undeveloped piezometers placed to between 2 and 15 m depth (in oxidized and unoxidized material) in a loamy glacial till (K range from 10?6 to 10?9 m s?1). Piezometers were purged between 9 and 11 times for sampling over a period of five months. The effect of the purgings on piezometer development was evaluated by changes in slope of the water level recovery curves which were used to calculate hydraulic conductivity. The first five purgings following piezometer installation increased K in the 15 piezometers by an average of 34%. The average increase in a value of K after 10 purgings was 44%. Values measured for hydraulic conductivity in a 75 mm diameter auger hole appeared stable after four purgings but piezometers installed in larger diameter boreholes (100 mm to 280 mm) snowed increases in K with up to 10 purgings. The hydraulic conductivity determined for piezometers installed at a 30° angle to the vertical showed greater variability than was observed in the adjacent vertically installed piezometers at the same depth.  相似文献   

2.
Slug tests performed using mini‐piezometers with internal diameters as small as 0.43 cm can provide a cost effective tool for hydraulic characterization. We evaluated the hydraulic properties of the apparatus in a laboratory environment and compared those results with field tests of mini‐piezometers installed into locations with varying hydraulic properties. Based on our evaluation, slug tests conducted in mini‐piezometers using the fabrication and installation approach described here are effective within formations where the hydraulic conductivity is less than 1 × 10?3 cm/s. While these constraints limit the potential application of this method, the benefits to this approach are that the installation, measurement, and analysis is cost effective, and the installation can be completed in areas where other (larger diameter) methods might not be possible. Additionally, this methodology could be applied to existing mini‐piezometers previously installed for other purposes. Such analysis of existing installations could be beneficial in interpreting previously collected data (e.g., water‐quality data or hydraulic head data).  相似文献   

3.
An impact drive point method is described for emplacing piezometers in a cobble river bottom where this has previously been difficult without the use of drilling rigs. To force the drive point piezometers through coble, the vibrational impact of an air-powered hammer was carried directly to the drive point by the use of an internal drive rod. After insertion to depth, the drive rod was removed from the lower portion of the piezometer and a standpipe was added to extend the piezometer above the river level. Piezometers installed in this way have permitted water quality analysis and dynamic measurement of vertical potentials in cobble sediments ranging in size from 2.5 to >30 cm and the method has been successfully used in the Columbia River, USA, and Töss River, Switzerland. This innovative method provides information on the hydrodynamics of pore water in highly permeable, cobble deposits that are common in high-energy river and lake bottoms. Piezometers installed using the internal drive rod method facilitate the assessment of the temporal and spatial dynamics of recharge and discharge at the ground water/surface water interface and analyses of the ecological connectivity between the hyporheic zone and surface water of rivers and streams. This information will lead to improved management decisions related to our nation's ground water and surface water supplies.  相似文献   

4.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

5.
Vertical depth profiles of pore water isotopes (δD and δ18O) in clay-rich aquitards have been used to show that solute transport is dominated by molecular diffusion, to define the timing of geologic events, and to estimate vertical hydraulic conductivity. The interpretation of the isotopic profiles in these studies was based on pore water samples collected from piezometers installed in nests (typically 4 to 15 piezometers) over depths of 10 to 80 m. Data from piezometer nests generally have poor vertical resolution (meters), raising questions about their capacity to reveal the impact of finer scale heterogeneities such as permeable sand bodies or fractured till zones on solute transport. Here, we used high-resolution (30-cm) depth profiles of δD and δ18O from two continuously cored boreholes in a till aquitard to provide new insights into the effects of sand bodies on solute transport. High-resolution core-derived profiles indicate that such heterogeneities can cause major deviations from one-dimensional diffusion profiles. Further, comparison of piezometer-measured values with best-fit diffusion trends shows subtle deviations, suggesting the presence of heterogeneities that should not be ignored. High-resolution profiles also more clearly defined the contact between the highly fractured oxidized zone and the underlying unoxidized zone than the piezometers.  相似文献   

6.
Grout curtains are vertical grout walls installed in the ground. In karst terrains, their construction is primarily connected with dams and reservoirs. Their main role is to increase water tightness and to prevent progressive erosion, blocking possible seepage paths along karst fissures and conduits. In this article, changes in the behaviour of the groundwater level (GWL) and the water temperature in nine deep piezometers, which were caused by the construction of a grout curtain at the ?ale Reservoir on the Cetina River (Croatia), were analysed. The total length of the grout curtain is 3966 m. It spreads 120 m below the dam. The most analysed data are from the period after the dam had been built. Only few data and figures concern the comparison between pre‐ and post‐dam periods. The hourly data of the GWL and the water temperature were analysed for the period between 1 September 2008 at 02:00 h to 31 December 2009 at 23:00 h (11 687 h total) in six deep piezometers (marked in the text and figures as 1, 2, 3, 4, 5 and 6). For three piezometers (marked in the text and figures as A, B and C), some discontinuous measurements of the GWL and the water temperature were available for analysis. The construction of the grout curtain made strong, sudden and possibly dangerous changes to the characteristics of the aquifer and the circulation of groundwater in the local area. Special attention is paid to analyses of the behaviour of the hourly GWL data measured in the piezometers pairs (two neighbouring piezometers, one inside and the other outside of the grout curtain). During more than 80% of the analysed period, the GWL was higher in the piezometer inside the grout curtain than the one outside of it. The intensity and range of the dynamics of GWL was higher in piezometer outside the grout curtain than the inside ones. After the construction of the grout curtain, the maximum measured hydrostatic pressure on some parts of the grout curtain was approximately 40 m. It changes quickly in both time and direction. The water temperature was found to be similar in all of the measured piezometers, and it varies between 10.2 and 15.7 °C with an average value of 12.7 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Atomic Energy of Canada Limited is constructing an Underground Research Laboratory (URL) at a depth of 250m in a plutonic rock body near Lac du Bonnet, Manitoba. The facility is being constructed to carry out a variety of in situ geotechnical experiments as part of the Canadian Nuclear Fuel Waste Management Program. A unique feature of the URL, in comparison to other similar facilities such as the Stripa Mine in Sweden, is that it is to be constructed below the ground water table in a previously undisturbed plutonic rock body. One of the main research objectives of the project is to develop and validate comprehensive three-dimensional models of the hydrogeology of the rock mass encompassing the URL site. These models will be used, before excavation of the URL shaft begins, to predict the hydrogeological perturbation that will be created by the excavation of the shaft and the horizontal working levels below the ground water table. As a model-validation exercise, these drawdown predictions will be compared with actual hydrogeological perturbations that will be monitored at the study area over the next several years by an extensive network of instrumented boreholes. Measurements made in an array of boreholes extending to depths of 1,000m on the 4.8 km2 study area have established that the permeability distribution in three major extensive subhorizontal fracture zones controls the movement of ground water within the rock mass. Several types of multiple-interval completion systems have been installed in the boreholes to monitor the three-dimensional, physico-chemical hydrogeological conditions within the fractured rock mass. These include conventional piezometer nests and water-table wells that have been installed in shallow holes (less than 30m deep), and multiple-packer/ multiple-standpipe piezometers and multiple-interval casing systems installed in deeper holes (30 to 1,000m deep). An automated, electronic, piezometric pressure-monitoring system has been designed to collect continuous measurements from 75 isolated hydrogeological monitoring positions within the rock mass. Another 200 positions are being monitored frequently using a variety of techniques. Piezometric data have been collected from this monitoring network to establish baseline conditions prior to any excavation into the rock mass. These data have also been used to determine the steady-state, three-dimensional ground water flow regimes that exist at the URL site under natural conditions.  相似文献   

8.
Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface‐ and ground‐water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface‐ and ground‐water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in arid south eastern Washington, USA. In‐stream slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The slug tests were performed for each horizontal coordinate at 0·3–0·45, 0·6–0·75, 0·9–1·05 and 1·2–1·35 m depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median, and empirical cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0·3–0·45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface‐ and ground‐water interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Conant B 《Ground water》2004,42(2):243-257
Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.  相似文献   

10.
A simple, effective method for the installation and sampling of vertically discrete points in a dynamic beach environment was developed and tested on the eastern shore of Lake Michigan, The installation permitted the vertical resolution of a ground water plume discharging to the lake and allowed monitoring of temporal variations during relatively calm and stormy periods of the year. These installations permit the definition of vertical heterogeneities such as oxidation-reduction conditions and geochemical characteristics that are expected to impact the transport and fate of ground water contaminants discharged to the surface water.  相似文献   

11.
Study of interactions between surface-water and pore-water in lakes is complicated due to spatio-temporal heterogeneities in flow condition across the sediment–water interface. In this study, seasonal hypersaline Maharlu Lake was investigated by collecting surface-water and pore-water samples from four nests of multilevel piezometers installed at different distances from the inflow of rivers to the lake. The hydraulic heads in the piezometers as well as vertical profiles of Mg+2, Na/Cl, and Br/Cl were used to investigate both hydraulic and geochemical interactions between surface-water and pore-water in the lake. Depletion of lake surface water and pore water with respect to B, Br, Li+, K+, Mg2+ and the absence of Mg-K chlorides and sulphates in the lake bed sediments is probably due to leakage of highly evaporated residual brine from the lake. Hydraulic gradients in the multilevel piezometric nests indicate that a general downward flow from surface-water to pore-water occurs across sediment–water interface. Vertical profiles of Br/Cl, Mg2+, and Na/Cl showed that the maximum flow rate was more than 1 m/yr close to the mouth of the inflowing rivers. The downward vertical flow was limited in the area far from the inflowing rivers due to the presence of an impermeable confining halite layer which interrupts the hydraulic connection between shallow pore water (less than 50 cm deep) and deeper zones. The hydraulic and geochemical interactions between surface-water and pore-water across sediment–water interface in the Maharlu Lake are of interest to find out the fate of pollutants and their distribution in the lake.  相似文献   

12.
Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 microg/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions.  相似文献   

13.
Artesian springs are localized aquifer outlets that originate when pressurized ground water is allowed to rise to the surface. Computing artesian discharge directly is often subject to practical difficulties such as restricted accessibility, abundant vegetation or slow flow rates. These circumstances call for indirect approaches to quantify flow. This paper presents a method to estimate ground water discharge through an upwelling spring by means of a three‐layer steady‐state groundwater flow model. Model inputs include on‐site measurements of vertical sediment permeability, sediment temperatures and hydraulic gradients. About 70 spring bed piezometers were used to carry out permeability tests within the spring sediments, as well as to quantify the hydraulic head at different depths below the discharge point. Sediment temperatures were measured at different depths and correlated to permeabilities in order to demonstrate the potential of temperature as a substitute for cumbersome slug tests. Results show that the spatial distribution of discharge through the spring bottom is highly heterogeneous, as sediment permeability varies by several orders of magnitude within centimetres. Sensitivity analyses imply that geostatistical interpolation is irrelevant to the results if field datasets come from a sufficiently high resolution of piezometric records. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A pilot-scale nutrient injection will (NIW) (4 m by 4 m by 1 m) was installed in the Borden Aquifer lo serve as a pulsed injection source of a potassium acetate solution for the stimulation of anaerobic microbial activity. The success of the flushing procedure was evaluated by monitoring the breakthrough of the acetate solution at several multilevel piezometers installed in the wall. Although some variation in the ground water velocity was observed with depth, the wall was flushed with reasonable uniformity after about six hours of injection and withdrawal, representing about one pore volume, Calculations bused on head level data collected during the flush, and on the solute breakthrough curves, indicated that about 90% of the flow induced by the pumping and injecting was confined to the permeable wall. These results show that a permeable wall injection system is a viable method of introducing solutes uniformly to a cross section of aquifer, with minimal perturbation of the natural flow system. In addition lo its importance for the biostimulation system tested in this project the flushing of permeable walls may have applications in other semi-passive remedial systems, such as the rejuvenation of reactive barriers.  相似文献   

15.
This paper describes a drive point system for installing small‐diameter (15 to 25 mm ID) piezometers to depths of several metres in unconsolidated sediments. The system fills the gap between (1) heavy duty drive point systems powered by drilling rig hydraulics or air hammers that are capable of installing large diameter drive points to depths of many tens of metres and (2) manually driven systems that typically install 10 mm ID or smaller tubing to depths of <2 m. Unlike many existing systems, which install piezometers inside an outer casing that is later removed, our system protects the piezometer screen inside the casing and extends it only once the casing is driven to the desired depth. This avoids clogging of the screen during installation and the risk of creating an annulus around the piezometer, which can provide a preferential pathway for water movement. The piezometer has a larger diameter than most manually driven systems, and thus has a higher yield; it also permits use of most commercially available pressure transducers and electrical conductivity sensors. The piezometers have been successfully installed to depths of up to 6 m using an electric hammer. The system overcomes some issues associated with existing systems and provides the advantages of affordability, rapid installation, mechanical assistance and manual portability.  相似文献   

16.
A Full-Scale Porous Reactive Wall for Prevention of Acid Mine Drainage   总被引:3,自引:0,他引:3  
The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problems is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water exiting the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentrations decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L; pH increases from 5.8 to 7.0; and alkalinity (as CaCO3) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.  相似文献   

17.
Data from a large-scale canal-drawdown test were used to estimate the specific yield (sy) of the Biscayne Aquifer, an unconfined limestone aquifer in southeast Florida. The drawdown test involved dropping the water level in a canal by about 30 cm and monitoring the response of hydraulic head in the surrounding aquifer. Specific yield was determined by analyzing data from the unsteady portion of the drawdown test using an analytical stream-aquifer interaction model (Zlotnik and Huang 1999). Specific yield values computed from drawdown at individual piezometers ranged from 0.050 to 0.57, most likely indicating heterogeneity of specific yield within the aquifer (small-scale variation in hydraulic conductivity may also have contributed to the differences in sy among piezometers). A value of 0.15 (our best estimate) was computed based on all drawdown data from all piezometers. We incorporated our best estimate of specific yield into a large-scale two-dimensional numerical MODFLOW-based ground water flow model and made predictions of head during a 183-day period at four wells located 337 to 2546 m from the canal. We found good agreement between observed and predicted heads, indicating our estimate of specific yield is representative of the large portion of the Biscayne Aquifer studied here. This work represents a practical and novel approach to the determination of a key hydrogeological parameter (the storage parameter needed for simulation and calculation of transient unconfined ground water flow), at a large spatial scale (a common scale for water resource modeling), for a highly transmissive limestone aquifer (in which execution of a traditional pump test would be impractical and would likely yield ambiguous results). Accurate estimates of specific yield and other hydrogeological parameters are critical for management of water supply, Everglades environmental restoration, flood control, and other issues related to the ground water hydrology of the Biscayne Aquifer.  相似文献   

18.
Comparison of heat and bromide as ground water tracers near streams   总被引:3,自引:0,他引:3  
Constantz J  Cox MH  Su GW 《Ground water》2003,41(5):647-656
Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present.  相似文献   

19.
Vertical hydraulic gradient is commonly measured in rivers, lakes, and streams for studies of groundwater–surface water interaction. While a number of methods with subtle differences have been applied, these methods can generally be separated into two categories; measuring surface water elevation and pressure in the subsurface separately or making direct measurements of the head difference with a manometer. Making separate head measurements allows for the use of electronic pressure sensors, providing large datasets that are particularly useful when the vertical hydraulic gradient fluctuates over time. On the other hand, using a manometer-based method provides an easier and more rapid measurement with a simpler computation to calculate the vertical hydraulic gradient. In this study, we evaluated a wet/wet differential pressure sensor for use in measuring vertical hydraulic gradient. This approach combines the advantage of high-temporal frequency measurements obtained with instrumented piezometers with the simplicity and reduced potential for human-induced error obtained with a manometer board method. Our results showed that the wet/wet differential pressure sensor provided results comparable to more traditional methods, making it an acceptable method for future use.  相似文献   

20.
The hydrogeology of the chemical waste disposal site in the closed basin at Alkali Lake, Oregon has been examined. Interest in the site is due to the burial (November 1976) of 25,000 drums of herbicide manufacturing residues in unlined trenches on the playa of the basin. Included in the wastes were large amounts of chlorophenols and polymeric chlorophenoxyphenols. The flow of the alkaline (pH ∼10) ground water in the site area is driven by: (1) springs which create a mound east of the site; and (2) the sump effect of “West Alkali Lake,” a topographic low to the west of the site. Porosity, bulk mass densities, and grain-size distributions were determined. At one piezometer, the depth to ground water ranged between 0.9 m and 2.2 m. With the bottoms of the trenches in which the chemicals were buried between 0.60 and 0.75 m below the level of the ground surface, the bottom portions of the trenches may, at least occasionally, be in direct contact with the ground water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号