首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have studied two microwave events with one-loop top (LT) and two-footpoint (FP) sources observed at 17 and 34 GHz by the Nobeyama Radioheliograph (NoRH). The microwave brightness peak is located near the FPs of the flare loop for one event, but near the LT for the other event. The microwave spectra of the FP sources are considerably softer (by 2.0) than that of the LTs for both events. We assume that the microwave emission is gyro-synchrotron radiation from energetic electrons trapped in a magnetic dipole field and the energetic electron distribution is isotropic in pitch angle and power law. In the gyro-synchrotron calculations, the self-absorption and gyro-resonance absorption are taken into account simultaneously. The numerical calculations based on the general equation of radiative transfer show that the distributions of energetic electrons along a flare loop are highly inhomogeneous: accelerated electrons are concentrated in the FPs for both events. Even for the event with brightness maximum near the LT the electron number density of the LT source is still an order of magnitude lower than that of the FP sources. The emission peak near LT results mainly from the much harder spectral index of the energetic electrons in the LT source.  相似文献   

2.
We present multi-frequency observations and model computations of the microwave emission of a solar active region. The radio observations were obtained with the RATAN-600 at several wavelengths between 0.8 and 31.6 cm and with the VLA at 6 and 20 cm. The active region was also observed in the EUV O Iv lines by the HRTS instrument aboard the Space Shuttle Spacelab-2 mission. These lines are formed in the chromosphere-corona transition region and their intensity ratio is sensitive to pressure. Photospheric magnetograms provided both the longitudinal and the transverse component of the magnetic field. The microwave observations were checked against model computations taking into account both the free-free and the gyro-resonance emission mechanisms and using the pressure data from the O IV lines. The magnetic field was computed through constant- force-free extrapolations of the longitudinal photospheric field. We computed both the flux from 2 to 20 cm and the spatial structure of the microwave emission at 6 and 20 cm. The comparison of the computed and observed flux spectra allowed us to estimate the magnetic field strength at the base of the transition region and in the low corona, as well as the values of the conductive flux and the height of the base of the transition region. The model maps at 6 cm and 20 cm showed that was not constant above the active region; the same conclusion was reached on the basis of the photospheric observations. The use of pressure measurements allowed us to identify microwave structures which were determined by pressure enhancements. At 6 cm the computations confirmed the fact that the magnetic field is the principal factor that determines the structure of sunspot-associated sources and showed that the effect of pressure variations was small. Pressure variations were more important at 20 cm, where the peak of the emission was associated with the sunspot and a diffuse component was associated with the plage which had an average pressure higher by a factor of 1.54 than the sunspot.  相似文献   

3.
DOUBLE-LOOP CONFIGURATION OF SOLAR FLARES   总被引:2,自引:0,他引:2  
Hanaoka  Yoichiro 《Solar physics》1997,173(2):319-346
We analyzed several flares, which are presumed to be caused by interactions between an emerging loop and an overlying loop. We call such a basic combination of loops a double-loop configuration, and we reveal its topology on the basis of the microwave and soft X-ray observations of the flares and the magnetograms. In many cases, the magnetic field of the flare loops shows a bipolar + remote unipolar structure, rather than a quadrapole structure. The footpoints of two loops are distributed in three magnetic patches, and two of the footpoints of the loops, one from the emerging loop and the other from the overlying loop, are included in a single magnetic polarity patch. Therefore, the two loops form a three-legged structure, and the two loops are not anti-parallel as assumed in the traditional reconnection models. Typically, the emergence of a parasitic polarity near the major preceding-polarity region or the following one in an active region creates this configuration, but, in one of the analyzed flares, two active regions are involved in the configuration. Not only the flares, but various other active phenomena – microflares, thermal plasma flows like jets, and surges – occur in the same magnetic configuration. Hence, the interaction between two loops, which forms the three-legged structure, is an important source of the various types of activity.  相似文献   

4.
M. R. Kundu 《Solar physics》1985,100(1-2):491-514
Over the past decade two large arrays — the Westerbork Synthesis Radio Telescope (WSRT) and the Very Large Array (VLA) built primarily for sidereal radio astronomy have been used for solar radio astronomical studies with spatial resolution of a few seconds of arc. In this review, we discuss some results obtained at Maryland using these instruments.The quiet Sun observations made with the WSRT have premitted us to produce synthesized maps of supergranulation network at 6 cm wavelength. The brightness temperatures of typical network elements and cells are respectively 2.5 × 104 K and 1.5 × 104 K; thus the contrast is 1.71 which compares with 1.31 for Ca + K and 20 for L networks. Limb profiles in both equatorial and polar directions have been obtained; limb brightening is observed at both west and south limbs, peak limb temperature being about 40% higher than disk temperature. We have produced synthesized maps of disk filaments which correspond well to H disk filaments and regions of reduced emission in He i 10 830 Å spectroheliograms. Using the WSRT synthesized maps at 6 cm, we have compared the structure of a sunspot associated source with model computations. Using a new method of analysis we have been able to map the vertical as well as the horizontal component of the sunspot magnetic field at specific locations in the low corona. Using the VLA, we have mapped coronal loops at 20 cm; the radio emission is attributed to bremsstrahlung near the loop footpoints whereas gyroresonance process dominates near the loop top. Using the VLA, we have carried out simultaneous observations of a microwave burst at 2 and 6 cm. The 6 cm burst source is apparently located near the top of a flaring loop, while the 2 cm emission originates from the loop footpoints. The 6 cm emission is attributed to gyrosynchrotron radiation of thermal electons in the bulk heated plasma at 4 × 107 K, while the 2 cm emission is due to nonthermal particles released and accelerated during the flare process. A DC electric field flare model appears to explain the observed delay between the peaks at the two wavelengths. From the delay, the strength of the electric field in the flaring region is estimated.  相似文献   

5.
Lara  A.  Gopalswamy  N.  Kundu  M. R.  Pérez-EnrÍquez  R.  Koshiishi  H.  Enome  S. 《Solar physics》1998,178(2):353-378
We have studied the properties and evolution of several active regions observed at multiple wavelengths over a period of about 10 days. We have used simultaneous microwave (1.5 and 17 GHz) and soft X-ray measurements made with the Very Large Array (VLA), the Nobeyama Radio Heliograph (NRH) and the Soft X-ray Telescope (SXT) on board the Yohkoh spacecraft, as well as photospheric magnetograms from KPNO. This is the first detailed comparison between observations at radio wavelengths differing by one order of magnitude. We have performed morphological and quantitative studies of active region properties by making inter-comparison between observations at different wavelengths and tracking the day-to-day variations. We have found good general agreement between the 1.5 and 17 GHz radio maps and the soft X-rays images. The 17 GHz emission is consistent with thermal bremsstrahlung (free-free) emission from electrons at coronal temperatures plus a small component coming from plasma at lower temperatures. We did not find any systematic limb darkening of the microwave emission from active regions. We discuss the difference between the observed microwave brightness temperature and the one expected from X-ray data and in terms of emission of a low temperature plasma at the transition region level. We found a coronal optical thickness of 10-3 and 1 for radiation at 17 and 1.5 GHz, respectively. We have also estimated the typical coronal values of emission measure ( 5 × 1028 cm-5), electron temperature ( 4.5 × 1066 K) and density ( 1.2 × 109 cm3). Assuming that the emission mechanism at 17 GHz is due to thermal free-free emission, we calculated the magnetic field in the source region using the observed degree of polarization. From the degree of polarization, we infer that the 17 GHz radiation is confined to the low-lying inner loop system of the active region. We also extrapolated the photospheric magnetic field distribution to the coronal level and found it to be in good agreement with the coronal magnetic field distribution obtained from microwave observations.  相似文献   

6.
Silva  Adriana V.R.  Lin  R.P.  de Pater  Imke  White  Stephen M.  Shibasaki  K.  Nakajima  H. 《Solar physics》1998,183(2):389-405
We present a comprehensive analysis of the 17 August 1994 flare, the first flare imaged at millimeter (86 GHz) wavelengths. The temporal evolution of this flare displays a prominent impulsive peak shortly after 01:02 UT, observed in hard X-rays and at microwave frequencies, followed by a gradual decay phase. The gradual phase was also detected at 86 GHz. Soft X-ray images show a compact emitting region (20), which is resolved into two sources: a footpoint and a loop top source. Nonthermal emissions at microwave and hard X-ray wavelengths are analyzed and the accelerated electron spectrum is calculated. This energy spectrum derived from the microwave and hard X-ray observations suggests that these emissions were created by the same electron population. The millimeter emission during the gradual phase is thermal bremsstrahlung originating mostly from the top of the flaring loop. The soft X-rays and the millimeter flux density from the footpoint source are only consistent with the presence of a multi-temperature plasma at the footpoint.  相似文献   

7.
Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a second step process. The information available so far was drawn from qualitative considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basic hypothesis investigated is that the peculiar gradual features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April, 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilisation of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.  相似文献   

8.
Asymmetric magnetic field configurations in solar active regions hinder mildly relativistic electrons with magnetic moments suitable to produce microwave radiation from being trapped. Therefore the duration of stay of electrons in the microwave source region is much shorter (<0.2 s) than in the usually assumed trapping models. On this basis we construct a consistent model of hard X-ray correlated microwave bursts due to continuous injection of electrons into a pole field of an asymmetric magnetic loop (Figures 1 and 2). This resolves the discrepancy of the numbers of electrons needed to produce X-ray and radio emission.We compute gyrosynchrotron spectra with the assumption of conservation of the magnetic moment M in the microwave source. The consequence is an anticorrelation between the low frequency power index a of the microwave spectrum and the power index of the hard X-ray spectrum. In fact during the flare of May 18, 1972 increases with time while a is decreasing, so that +a= constant. Furthermore, it is shown that electrons with energies below 100 keV contribute significantly to the microwave radiation; they determine the low frequency spectrum completely.The model is able to explain the most often observed type C-spectra (Guidice and Castelli, 1975), but also flat spectra over one frequency decade.On leave from University of Berne, Institute of Applied Physics.  相似文献   

9.
In this paper we compute polytropic stellar models distorted by differential rotation owing to the viscous material of the models. To carry out our calculations, we assume cylindrical symmetry for both viscosity and differential rotation. We also assume a constant rotation decay time over a long time. We thus obtain a differential equation representing the coupling of viscosity and differential rotation, which can be solved for the differential rotation provided that the viscosity is known. This equation fits well the framework of a complex-plane strategy and of a multiple-partition technique which are numerical techniques implemented in the required computations.  相似文献   

10.
C. S. Li  Q. J. Fu  H. W. Li 《Solar physics》1991,131(2):337-350
Recent observations show that the rapid fluctuations in radio, hard X-ray, and H emissions are closely associated with type III and microwave (or decimetric) bursts during the impulsive and/or preimpulsive phases of solar flares.In order to clarify the physical processes of these observed phenomena, this paper proposes a tentative model of two acceleration regions A (source of type III bursts) and B (source of microwave or decimetric bursts) formed in the neutral sheet and at the top of a flaring loop, respectively; and also suggests that the electron beams streaming from region A and/or region B downward to the chromosphere are responsible for the rapid fluctuations in the different emissions mentioned above during the impulsive and/or pre-impulsive phases of solar flares.  相似文献   

11.
T. Takakura 《Solar physics》1988,115(1):149-160
Time-dependent Fokker-Planck equation was numerically solved to demonstrate the dynamics of electrons in a uniform coronal loop with an applied axial DC electric field in the presence of ion-sound waves. This electric field is attributed to an anomalous resistivity due to the ion-sound turbulence caused by an initially given critical current density.The electron momentum distribution becomes a steady state in the whole turbulent region in a short time for which some electrons can be accelerated to the maximum electric potential K c. The steady energy distribution of electrons flowing out the end of the turbulent region has a very hard power-law-like spectrum with an index of about 0.75. The associated hard X-rays from a thick target also show a hard spectrum with a photon spectral index of 1.3. In order for to be much greater as observed in impulsive X-ray bursts, it is required that the source is a sum of many elementary loops with a power-law-like distribution in K c with an index = – + 2.5.  相似文献   

12.
The work is devoted to the investigations of possible observational manifestations of protoobjects related to the dark ages epoch (10 < z < 1000), before formation of self-luminous galaxies and stars. These objects can distort the cosmic microwave background. Formation of these objects is described in the pancake theory and in the model of hierarchic clustering. According to these theories we may consider these protoobjects as flat layers. We consider both Thomson (with Rayleigh phase matrix) and resonance (for complete frequency redistribution) scattering of cosmic microwave background radiation by a moving flat layer. The resulting anisotropy and polarization of cosmic microwave radiation are calculated for a wide range of layer optical thickness (from an optically thin layer to an optically thick one). Analytical solutions are also obtained for the case of an optically thin layer and are compared with the numerical ones.  相似文献   

13.
We discovered quasi-periodic oscillation characteristics of 1.4–1.6 s in the spike radiation of the typical microwave outburst observed on May 16, 1981. We analysed the observations in terms of MHD waves (sausage mode) propagating inside and outside a loop. The waves can modulate the magnetic field and the pitch angle distribution of the electron beams in the source region. These affect the growth rates of the ECM instability and so quasi-periodic oscillations in the spike radiation are generated. In addition, we estimated quantitively some relevant physical parameters.  相似文献   

14.
We report peculiar spectral activity of four large microwave bursts as obtained from the Solar Arrays at the Owens Valley Radio Observatory during observations of X-class flares on 1990 May 24 and 1991 March 7, 8, and 22. Main observational points that we newly uncovered are: (1) flat flux spectra over 1–18 GHz in large amounts of flux ranging from 102 to 104 s.f.u. at the maximum phase, (2) a common evolutionary pattern in which the spectral region of dominant flux shifts from high frequencies at the initial rise to low frequencies at the decaying phase, and (3) unusual time profiles that are impulsive at high frequencies but more extended at lower frequencies.In an attempt to elucidate these new properties, we carry out the model calculations of microwave spectra under assumptions of gyrosynchrotron mechanism and a dipole field configuration to reproduce the observational characteristics. Our results are summarized as follows. First, a flat microwave spectrum reaching up to 102–104 s.f.u. may occur in a case where a magnetic loop is extended to an angular size of (0.7–7.0) × 10–7 sterad and contains a huge number (N(E > 10 keV) 1036– 1038) of nonthermal electrons with power-law index 3–3.5 over the entire volume. Second, the observed spectral activity could adequately be accounted for by the shrinking of the region of nonthermal electrons to the loop top and by the softening of the power-law spectrum of electrons in a time scale ranging 3–45 min depending on the event. Third, the extended microwave activity at lower frequencies is probably due to electrons trapped in the loop top where magnetic fields are low. Finally, we clarify the physical distinction between these large, extended microwave bursts and the gradual/post-microwave bursts often seen in weak events, both of which are characterized by long-period activity and broadband spectra.  相似文献   

15.
We describe initial results of a program to image massive newly-formed stars with sub-arc second spatial resolution. We discuss high-precision diffraction-limited size measurements at =10 m made using the 3 m Lick telescope. The point-spread function has FWHM 0.7; deconvolution yields a spatial resolution of 0.35. We find that the core component of one such object, LkH 101, is unresolved at these scales, and we are able to set a 95%-confidence upper limit of 270 AU for the diameter of the circumstellar dust shell. This places the dust at the same radial scale as a strong ionized stellar wind region seen at radio wavelengths. Our observations, when combined with published spectral observations, rule out an optically thick circumstellar disk but allow a radially thin, anisotropic distribution of dust, or alternatively an isotropic distribution of dust with a narrow range of large grain sizes.  相似文献   

16.
The data such as the H-spectrum-spectroheliographic (SSHG) observations, the H-chromospheric observations, etc., of a flare loop prominence which occurred on the western solar limb on 1981 April 27 have been obtained at Yunnan Observatory. The distribution of the internal motions and the macroscopical motion of the flare loop prominence with time and space in the course of its eruption and ascension is derived from the comprehensive analysis of the data. The possible physical pictures and the instability of the motions of the loop are inferred and discussed.  相似文献   

17.
The Very Large Array and the Soft X-ray Telescope (SXT) aboard the Yohkoh satellite jointly observed the rapid growth and decay of a so-called anemone active region on 3–6 April, 1992 (AR 7124). The VLA obtained maps of the AR 7124 at 1.5, 4.7, and 8.4 GHz. In general, discrete coronal loop systems are rarely resolved at 1.5 GHz wavelengths because of limited brightness contrast due to optical depth effects and wave scattering. Due to its unusual anemone-like morphology, however, several discrete loops or loop systems are resolved by both the VLA at 1.5 GHz and the SXT in AR 7124.Using extrapolations of the photospheric field and the radio observations at 4.7 and 8.4 GHz, we find that the microwave emission is the result of gyroresonance emission from a hot, rarefied plasma, at the second and/or third harmonic. The decimetric source is complex -1.5 GHz emission from the leading part of AR 7124 is due to free-free emission, while that in the trailing part of the active region is dominated by gyroresonance emission. We also examine an interesting case of a discrete radio loop with no soft X-ray (SXR) emission adjacent to a hot SXR loop. This observation clearly shows the multithermal nature of the solar corona.  相似文献   

18.
Y. T. Chiu 《Solar physics》1970,13(2):420-443
We show that the observed modulation of some coronal microwave, X-ray and Type III emission into pulses of 10 sec intervals is a consequence of the stimulation of electron cyclotron waves propagated in the whistler mode in dipole-like bipolar regions of dimension 0.2 R . Assuming that a power law spectrum of 10 keV electrons with a slope similar to solar flare protons can be trapped in a bipolar region, we show that whistlers can be generated by pitch angle instability. The resultant 10 sec bounce motion of whistler wave trains leads to enhanced, modulated emission in microwave and X-ray frequencies by pitch angle scattering of MeV electrons, and to modulated Type III emission by scattering with coherent plasma waves. A direct prediction of the theory is the existence of sympathetic pulsations at two sources a fraction of a solar radius apart. A second test of the theory is that modulated Type III emission should show strong polarization.This work was conducted under U.S. Air Force Space and Missile Systems Organization (SAMSO) Contract No. F04701-69-C-0066.  相似文献   

19.
The low- coronal loop model of Sillen and Kattenberg (1980) is extended to include a surrounding current-free plasma. We calculated the dispersion curves of kink modes by solving the linearized MHD-equations of motion.We found a strong stabilizing influence on the growth rates of kink instabilities due to the surrounding plasma.In loops that are thick, have small current densities and that have a high density and a low magnetic field strength the growth times for kinks become of the order of days.Presently at Caltech, Pasadena, U.S.A.Presently at the FOM-Institute for Plasma Physics, Rijnhuizen, Nieuwegein, The Netherlands.  相似文献   

20.
Observations of the 15:22 UT flare of 24 June 1980 were made using the Very Large Array (VLA) at 6 cm wavelength simultaneously with the Hard X-ray Imaging Spectrometer (HXIS) aboard the Solar Maximum Mission. It was found that at the peak of the impulsive phase, the brightest microwave point appeared to lie between the soft (3.6–8.0 keV) and hard (22–30 keV) X-ray maxima, which were themselves separated by 20 (Kundu et al., 1984). Since the publication of these results, we have analyzed the imaging data from the Ultraviolet Spectrometer Polarimeter (UVSP) with the goal of narrowing the possible interpretations of the event. Like the VLA and HXIS, the UVSP observations provide information about the location of the primary electrons; the observations taken together suggest that the fast electrons were symmetrically distributed within the flare loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号