共查询到20条相似文献,搜索用时 15 毫秒
1.
卷积神经网络等深度学习模型已经在高光谱影像分类任务中取得了理想的结果.然而,由于传统神经元只能进行标量计算,现有的深度学习模型无法对高光谱影像特征的实例化参数进行建模,因此无法在邻域范围受限的条件下获得令人满意的分类效果.通过引入胶囊网络结构设计了一种新型网络模型,该模型利用胶囊神经元进行向量计算,并利用权重矩阵编码特... 相似文献
2.
3.
高光谱影像具有丰富的空间和光谱信息,充分提取和利用这两个维度的信息是高光谱分类算法重点关注的问题。目前深度特征提取网络通常利用单分支串行网络连续提取空谱特征或双分支并行网络分别提取空谱特征。由于空间和光谱维内在差异,单分支串行网络连续提取的两类特征之间会互相干扰。并行双分支网络虽然可以减少两类特征之间的干扰,但同时会忽略空间和光谱特征间的潜在相关性。为解决上述问题,本文提出了一种三分支分组空谱注意力深度网络结构。该网络具有3个分支,分别用于提取空间、光谱和空谱联合特征。针对3个分支的不同特性,设计了不同的注意力机制以加强特征的判别性。该网络既可以提取独立的空间和光谱特征,又保留了空间和光谱之间的相关性。在5个数据集上的实验表明,本文所提出的方法要优于现有的一些先进算法。 相似文献
4.
联合空-谱信息的高光谱影像深度三维卷积网络分类 总被引:2,自引:2,他引:2
针对高光谱影像分类高维和小样本的特点,提出一种基于深度三维卷积神经网络的高光谱影像分类方法。首先,该方法直接以高光谱数据立方体为输入,利用三维卷积操作提取高光谱数据立方体的三维空-谱特征。然后,利用残差学习构建深层网络,提取更高层次的特征表达,以提高分类精度。最后,采用Dropout正则化方法防止过拟合。利用Pavia大学、Indian Pines和Salinas 3组高光谱数据进行试验验证,结果表明,与支持向量机和现有的基于深度学习的高光谱影像分类方法相比,该方法能有效提高高光谱影像的地物分类精度。 相似文献
5.
针对高光谱影像分类问题,提出了基于深度卷积循环神经网络的高光谱影像空谱特征分类方法.首先将高光谱数据立方体看作一组特征序列;然后利用深度卷积循环神经网络构建特征序列的依赖关系,并采用"预训练+微调"的训练策略对深层网络模型进行训练,从而使得所设计的深层网络在训练样本较少的情况下也能得到更加充分的优化.在Pavia大学和Indian Pines数据集上的试验结果表明,构建的深度卷积循环神经网络的分类精度比RNN方法分别提升了9.49%和5.8%. 相似文献
6.
高光谱遥感技术在环境监测、应急保障、精细地物提取等方面有着广泛的应用,随着高分五号高光谱数据的正式发布,高光谱遥感技术将发挥更重要的作用。遥感影像分类作为高光谱遥感影像信息处理的重要部分,已成为当前研究重点。本文针对传统多级联森林深度学习中模型复杂、无法利用基分类器差异信息、对类间差异较小的样本无法正确区分等不足,提出了一种改进的多级联森林深度学习模型,在模型框架中,分别采用了随机森林和旋转森林作为基分类器,并引入逻辑回归分类器作为判别器用于训练层扩展。相较于传统的深度神经网络,改进的多级联森林深度网络超参数较少且能够自适应确定训练层,更方便进行模型优化。实验采用了高分五号数据集及两个公开的高光谱数据集(Indian Pines数据集及Pavia University数据集)进行精度评定,同时选择了传统分类器支持向量机、深度置信网等模型作为对比分析。实验结果表明,改进的多级联森林深度学习模型能有效地进行高光谱遥感影像分类,且较传统的分类方法精度有所提升。 相似文献
7.
为了提高高光谱影像分类精度,提出了一种基于生成式对抗网络的高光谱影像分类方法。生成式对抗网络由生成器、判别器和分类器3部分组成,其中生成器用于模拟高光谱样本的数据分布,生成特定类别的样本;判别器是一个二值分类器,用于判断输入的样本是否为真实数据;分类器用于对输入的样本进行分类。利用反向传播算法依次更新生成器、判别器和分类器的网络参数使损失函数最小,从而达到训练网络的目的。生成器和判别器能够模拟高光谱影像的样本分布来辅助训练分类器,因此能够提高高光谱影像的分类精度。分别采用Pavia大学和Salinas高光谱数据集进行分类试验,试验结果表明提出的分类方法能够在小样本条件下提高高光谱影像的分类精度。 相似文献
8.
针对高光谱影像分类面临的小样本问题,提出了一种深度少样例学习算法,该算法在训练过程中通过模拟小样本分类的情况来训练深度三维卷积神经网络提取特征,其提取得到的特征具有较小类内间距和较大的类间间距,更适合小样本分类问题,且能用于不同的高光谱数据,具有更好的泛化能力。利用训练好的模型提取目标数据集的特征,然后结合最近邻分类器和支持向量机分类器进行监督分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验,试验结果表明,该算法能够在训练样本较少的情况下(每类地物仅选取5个标记样本作为训练样本)取得优于传统半监督分类方法的分类精度。 相似文献
9.
针对高光谱影像非线性分类问题,根据高光谱影像光谱分辨率高且光谱具有非线性的特点,结合深度学习理论,提出了一种采用降噪自动编码器(DAE)的高光谱影像分类方法。该方法结合降噪自动编码器与SOFTMAX分类器,构造深层网络分类模型;然后,利用加噪后的光谱数据,采用Dropout方法对分类模型进行预训练和微调;最后,利用训练得到的网络模型学习高光谱影像光谱的隐含特征,实现高光谱影像的分类。采用该方法对AVIRIS和PHI的高光谱影像分别进行分类对比实验,结果表明该方法能有效提高高光谱影像分类精度。 相似文献
10.
针对高光谱影像分类面临的小样本问题,提出了一种深度少样例学习算法,该算法在训练过程中通过模拟小样本分类的情况来训练深度三维卷积神经网络提取特征,其提取得到的特征具有较小类内间距和较大的类间间距,更适合小样本分类问题,且能用于不同的高光谱数据,具有更好的泛化能力。利用训练好的模型提取目标数据集的特征,然后结合最近邻分类器和支持向量机分类器进行监督分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验,试验结果表明,该算法能够在训练样本较少的情况下(每类地物仅选取5个标记样本作为训练样本)取得优于传统半监督分类方法的分类精度。 相似文献
11.
高光谱遥感数据具有光谱信息丰富、图谱合一的特点,目前已经广泛地应用在对地观测中。传统的高光谱分类模型大多过分依赖影像光谱信息,没有充分利用空间特征信息,这使得分类精度还有很大的提升空间。条件随机场是一种概率模型,能够较好地融合空间上下文信息,在高光谱影像分类中已经得到越来越多的关注,但大部分条件随机场模型存在超平滑的现象,会导致影像细节丢失。针对该问题,本文提出了一种优化融合影像空-谱信息的高分辨率/高光谱影像分类方法,该方法将影像的纹理信息与原始光谱信息进行融合,利用SVM分类器对其进行预分类,并将各类概率定义为一元势函数,以融合空间特征信息;然后将空间平滑项和局部类别标签成本项加入二元势函数中,以考虑空间背景信息,并保留各类别中的详细信息。最后,通过两组的高分辨率/高光谱影像数据进行试验。结果表明,与SVM算法、传统的条件随机场方法和面向对象的分类方法相比,本文提出的算法在整体分类精度上分别提高了10%、9%和8%以上,同时在保持地物边缘完整性、避免“同谱异物”与“同物异谱”的现象方面有较明显的优势。 相似文献
12.
高光谱遥感影像优化分类波段选择 总被引:3,自引:0,他引:3
利用粗糙集关于属性依赖性公式,本文给出一种定义遥感影像波段间相似度的方法,通过模糊聚类,得到对高光谱遥感影像原始波段集合的模糊等价划分,在每个模糊等价波段组中,选择一个代表性波段完成对原始波段集合的初步降维,基于遗传算法并结合粗糙集理论,在降维中的波段集合中进一步进行的分类波段组合的优化选择,实验结果表明,本文给出的高光谱遥感影像优化分类波段组合选择方法是非常有效的。 相似文献
13.
利用高光谱遥感影像的空间纹理特征,可以提高高光谱遥感影像的分类精度。提出了一种多层级二值模式的高光谱影像空-谱联合分类方法。该方法将高光谱影像转化为局部二值模式特征图像获取像元微观特征,基于特征图像生成多层级特征向量获取像元宏观特征。为验证该方法的有效性,选取PaviaU、Salinas和Chikusei高光谱影像数据,利用核极限学习机分类器,分别针对光谱、局部二值模式、多层级二值模式等特征开展实验。结果表明,多层级二值模式空-谱分类总体精度分别达到97.31%、98.96%和97.85%,明显优于传统光谱、3Gabor空-谱等分类方法。该方法可为高光谱影像分类提供更加有效的类别判定特征,有助于提高影像分类精度并获取更加平滑的分类结果图。 相似文献
14.
:光谱相似性测度用来衡量像元光谱的相似程度,是高光谱影像光谱匹配分类的重要工具之一,一般通过设置阈值判断像元光谱和参考光谱是否相似来进行分类。在此基础上,本文提出了一种多特征转换的高光谱影像自适应分类方法,实现了各种光谱相似性特征和分类器相结合的一种自适应分类。实验结果表明,本文提出的方法相比于传统的SVM方法,分类的总体精度更高,还可以避免部分传统光谱匹配分类方法中需要专家经验确定分类阈值的复杂过程。 相似文献
15.
16.
虞瑶高涵陶旸王圣尧 《测绘与空间地理信息》2023,(4):49-52
高光谱遥感影像光谱维度高、数据量大且波段间冗余信息量大,利用集成学习算法可有效地提升高光谱遥感影像的识别精度。本文首先概述了高光谱遥感影像的分类任务和目前存在的问题,其次介绍了集成学习分类算法的原理,系统性阐述了高光谱遥感影像分类中动态集成和静态集成算法的研究现状,并提出了有待进一步研究的问题。 相似文献
17.
如何有效地提取和融合不同模态的特征是高光谱图像和激光雷达数据联合分类的关键。近年来,得益于深度学习强大的特征学习能力,其在高光谱图像和激光雷达数据联合分类领域受到了越来越多的关注。然而,现有的深度学习模型大多基于监督学习的模式,分类性能依赖标注样本的数量和质量。为此,本文提出了一种基于模态间匹配学习的联合分类方法,充分利用未标注样本的信息,减少对标注信息的依赖性。具体而言,本文首先通过高光谱图像和激光雷达数据之间的匹配关系和KMeans聚类算法,构造模态匹配标签。然后,利用该标签训练含有多个卷积层的匹配学习网络。该网络由两个并行分支构成,每个分支负责提取单个模态的特征。最后,以该网络为基础,构造高光谱图像和激光雷达数据联合分类模型。该模型的参数由匹配学习网络进行初始化,因而只需要少量标注样本进行微调即可达到理想的分类效果。为了验证本文方法的有效性,在Houston和MUUFL两个常用的高光谱图像和激光雷达数据联合分类数据集上进行了大量的实验。实验结果表明,与已有的分类模型相比,本文方法能够获得更高的分类性能。 相似文献
18.
随着航空航天技术与遥感技术的不断发展,遥感影像在诸多领域的应用不断拓展,其中高光谱分辨率遥感影像具有“图谱合一”的特点,即该数据既包含了具有强大区分性的地物光谱信息,又包含了丰富的地物空间位置信息,因此高光谱数据具有非常大的应用潜力。高光谱异常目标检测问题,是在对目标先验信息未知的前提下,根据光谱与空间信息实现对区域中的异常目标的进行“盲”检测,因此其在资源调查、灾害救援等领域发挥了巨大的作用,是遥感领域非常重要的研究课题。本文针对高光谱遥感影像异常目标检测研究方向,首先总结阐述了目前高光谱异常目标检测问题的主要研究进展,根据算法原理的不同对现有主流算法进行了分类与总结,主要分成了基于统计学、基于数据表达、基于数据分解、基于深度学习等不同的种类的方法,并对每类方法的特点进行分析。随后通过对现有方法的调研、分析与总结,提出了数据库拓展、多源数据融合、算法实用化等高光谱异常检测研究未来发展的3个方向。 相似文献
19.
为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的相似性和差异性,从而提出类间变异系数(CVIE)和类内变异系数(CVIA)的概念。通过计算(CVIE)~2/CVIA的值来剔除高光谱遥感图像中的低效波段,然后提取每个像素的空一谱信息,并对其进行2维矩阵化操作,转化为便于卷积神经网络(CNN)输入的灰度图像,最后采用自行构建的适合于高光谱遥感图像分类的CNN模型进行分类。Indian Pines和Pavia University两组数据的实验结果表明,该方法在两种数据集下的总体精度分别达到98.69%和99.66%,有效地改善了高光谱遥感图像的分类精度。 相似文献
20.
卷积神经网络CNN(Convolutional Neural Networks)具有强大的特征提取能力,应用于高光谱图像特征提取取得了良好的效果,双通道CNN模型能够分别提取高光谱图像的光谱特征和空间特征,并实现了特征的决策级融合。局部二值模式LBP(Local Binary Patterns)是一种简单但有效的空间特征描述算子,能够减轻CNN特征提取的压力并提高分类精度。为了充分利用CNN的特征提取能力及LBP特征的判别能力,提出一种双通道CNN和LBP相结合的高光谱图像分类方法,首先,采用1维CNN(1D-CNN)模型处理原始高光谱数据提取深层光谱特征,同时采用另一个1D-CNN模型处理LBP特征数据进一步提取深层空间特征,然后,将两个CNN模型的全连接层进行连接,实现深层光谱特征和空间特征的融合,并将融合特征输入到分类层中完成分类。实验结果表明,该方法在Indian Pines数据、Pavia University数据及Salinas数据上能够分别取得98.54%、99.73%、99.56%的分类精度,甚至在有限数量的训练样本条件下也能取得较好的分类效果。 相似文献