首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

2.
Stromboli volcano has been in continuous eruption for several thousand years without major changes in the geometry and feeding system. The thermal structure of its upper part is therefore expected to be close to steady state. In order to mantaim explosive activity, magma must release both gas and heat. It is shown that the thermal and gas budgets of the volcano lead to consistent conclusions. The thermal budget of the volcano is studied by means of a finite-element numerical model under the assumption of conduction heat transfer. It is found that the heat loss through the walls of an eruption conduit is weakly sensitive to the dimensions of underlying magma reservoirs and depends mostly on the radius and length of the conduit. In steady state, this heat loss must be balanced by the cooling of magma which flows through the system. For the magma flux of about 1 kg s-1 corresponding to normal Strombolian activity, this requires that the conduits are a few meters wide and not deeper than a few hundred meters. This implies the existence of a magma chamber at shallow depth within the volcanic edifice. This conclusion is shown to be consistent with considerations on the thermal effects of degassing. In a Strombolian explosion, the mass ratio of gas to lava is very large, commonly exceeding two, which implies that the thermal evolution of the erupting mixture is dominated by that of the gas phase. The large energy loss due to decompression of the gas phase leads to decreased eruption temperatures. The fact that lava is molten upon eruption implies that the mixture does not rise from more than about 200 m depth. To sustain the magmatic and volcanic activity of Stromboli, a mass flux of magma of a few hundred kilograms per second must be supplied to the upper parts of the edifice. This represents either the rate of magma production from the mantle source feeding the volcano or the rate of magma overturn in the interior of a large chamber.  相似文献   

3.
The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of clastogenic lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.  相似文献   

4.
Heat and mass transfer rates were studied at the Niragongo lava lake during two expeditions directed by H. Tazieff in 1959 and 1972. The results of this study are as follows:Heat is transferred to the surface of the lake by the movement of lava; gas discharge is a result and not the cause of convection. The chemical composition of the gases and magma has changed very little between 1959 and 1972, whereas the mass and energy outputs differ by an order of magnitude. In 1977 a catastrophic explosion seems to have been caused by tectonic factors, stopping the slow convection of magma under the volcano and hence reducing surface manifestations in the form of the lava lake and escaping fumarolic and magmatic gases. The gas discharge was, in tons day−1, 5000 for H2O, 11,000 for CO2, 1000 for SO2 in 1959, and in 1972 7700 for H2O, 180,000 for CO2 and 23,000 for SO2. These values correspond to an energy transfer of 0.9 × 109 W in 1959 and 16 × 109 W in 1972.  相似文献   

5.
On January 30, 1974, an explosive eruption began on the western side of Etna. The activity evolved into two eruptive periods (January 30–February 17 and March 11–29). Two spatter cones (Mount De Fiore I and Mount De Fiore II) were formed at a height of about 1650 m a.s.l. and a distance of 6 km from the summit area. The effusive activity was very irregular with viscous lava flows of modest length.A seismic network of four stations was established around the upper part of the volcano on February 3. Moreover additional mobile stations were set up at several different sites in order to obtain more detailed informations on epicenter locations and spectral content of volcanic tremor.The volcanic activity is discussed in relation to the distribution of epicenters and the time-space distribution of the spectral characteristics of volcanic earthquakes and tremor. The characteristics of the seismic activity suggest that the flank eruption of Mount Etna was probably feed by a lateral branch of the main conduit yielding the activity at the Central Crater.  相似文献   

6.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   

7.
During the 1971–1972 eruption of Soufrière volcano on St. Vincent Island, a lava mass was extruded subaqueously in the crater lake. An investigation of the chemistry of the lake indicates that over 50,000 tons of dissolved solids were taken into solution during the eruption, in addition to 9000 tons of iron precipitated as ferric oxide in syngenetic metalliferous sediments on the crater floor. Leaching of hot disintegrating lava and volcanic glass is the principal source of cations dissolved in the lake (Na, Ca, Mg, Si and K), whereas chlorine and sulfur were introduced during injection of acid volcanic gases from the submerged lava mass. Concentrations of the common cations in the lake are not affected by mineral solubility, except in the case of Fe3+, but rather by the rate of leaching, evaporation, and water-rock reactions. Variations in Cl/Na, total Cl and acidity have aided in identification of distinct fumarolic phases during the eruption, which may correlate with observed increase in frequency of minor volcanic tremors in the crater. Accumulation of ferric oxide in sediments on the crater floor is thought to be due to leaching of ferrous iron at high temperature from the lava mass, followed by oxidation and precipitation of hematite in the cooler lake.  相似文献   

8.
The restored compositions for approximately 70 new analyses reported recently for Erta'Alelava lake (LeGuern et al., 1979) are in good agreement with restored compositions (Gerlach, 1980a) based on previously published data. The results confirm earlier indications that gas collections taken at different times from the lava lake are related principally by variations in CO2 content. Restored compositions for gas samples collected in the final stages of a November 1978 Ardoukoba eruption along the Asal Rift spreading axis resemble the Erta'Ale gases except for a much lower CO2 content. The Ardoukoba gases fall close to a CO2-decreasing control line for gases with initial compositions similar to the 1971–1973 Erta'Ale gases. These results suggest that gases released from basaltic lava along zones of crustal spreading follow compositional trends dominated by changes in CO2 content.  相似文献   

9.
The April 1906 eruption of Vesuvius is the type-example of the final eruptions that close the short cycles of semi-persistent activity that characterized the volcano in the 1631–1944 period. The eruption had a marked explosive character that accompanied the emission of lava from several vents on the southern slopes of the volcano. The observed sequence of events was characterized by repeated fluctuations of the magma level within the conduit, by large lava fountains, by conduit partial collapses, and by the final explosive decapitation of the summit cone. Contemporary chronicles, although frequently contradictory, allow reconstruction of the eruption, which can be divided into four main phases: (1) lateral lava effusions; (2) lava fountains; (3) gas-pyroclasts column; (4) low dense clouds. Pyroclastic deposits of the Monte Somma ridge and northeastern slope can be related to observed and described events and mainly refer to the 2nd and 3rd phases. The increase in the degree of fragmentation of the juvenile component together with the marked increase of the lithic component and morphologic evidence emphasize the repeated occurrence of magmawater interaction. This was most spectacular in the 3rd phase of the eruption in which, after the decapitation of the cone, a high gas-pyroclasts eruption column was formed. Because of the nature of the lithic fragments (mainly hydrothermally altered and metasomatic rocks), the huge amount of steam, and the high lithic/juvenile ratio, it is unlikely that the largest part of the energy in play was related to the contact between magma and cold phreatic water. We suggest that most of the steam involved in this phase of the eruption came from flashing of the hydrothermal system connected to the very shallow feeding system of the volcano and formed as a consequence of repeated subsurface intrusions between 1872 and 1906. Juvenile products were ejected through the eruption, and represent (at least) two different magma bodies: the first (older) was erupted during the initial phase of the eruption and was exhausted at the beginning of the lava fountains phase, when fresh magma was involved in the eruption.  相似文献   

10.
The eruptive history of Kuju volcano on Kyushu, Japan, during the past 15,000 years has been determined by tephrochronology and 14C dating. Kuju volcano comprises isolated lava domes and cones of hornblende andesite together with aprons of pyroclastic-flow deposits on its flanks. Kuju volcano produced tephras at roughly 1000-yr intervals during the past 5000 years and 70% of the domes and cones have formed during the past 15,000 years. The youngest magmatic activity of Kuju volcano was the 1.6 km3 andesite eruption about 1600 years ago which emplaced a lava dome and block-and-ash flow. Kuju volcano shows a nearly constant long-term eruption rate (0.7–0.4 km3 for 1000 years) during the past 15,000 years. This rate is within the range of estimated average eruption rates of late Quaternary volcanoes in the Japanese Arc, but is about one order of magnitude higher than the eruption rate of Unzen volcano. Kuju volcano has been in phreatic eruption since October 1995. The late Quaternary history of Kuju indicates that it poses a significant volcanic hazard, primarily due to block-and-ash flows from collapsing lava domes.  相似文献   

11.
Mt. Yaké or Yaké-daké is a dissected dome-shaped volcano mainly composed of the biotite bearing augite-hypersthene-hornblende andesite lavas extruded on the high mountain ridge consisting of the granite and hard Palaeozoic rocks between two prefectures Nagano and Gifu in the central part of Japan. It had been almost in dormant state only with weak fumarole activity on and around its summit dome since the former active period from 1907 to 1932. Incandescent lava emission has never been recorded in the historic age. On 17th June 1962 at about 21 h 55 m, a sudden explosion took place on the northern side of the dome. After successive explosions a fissure, about 700 m in length, was formed. On 19th from the northeast end of the fissure, milky hot water suspending muddy material flowed out. The mud flow ran down on the slope along the dry gully and poured into the Lake Taisyo-iké, about 2.5 km east of the vent. The lake was formed in 1915-eruption when a tremendous mud flow dammed up Azusagawa, the river running through the valley east of the volcano. Ejected blocks were deposited on the area within 1 km from the vent. Ash was deposited about 1 cm in thickness on the area about 4 km east of the volcano. Several mud flows poured into the Lake Taisyo-iké and the River Azusagawa. But no red-hot ejecta was observed during the present eruption, and temperature near the vent was lower than 100°C. Thus the present eruption is said to be low temperature phreatic explosions. In suspensoids of the hot water and in clayey matter deposited around the new vent are contained the montmorillonites, which hove never been found in the rocks exposed on the volcano in spite of the detailed investigation of the writers over 10 years. On the other hand, the mineral is not expected to be formed in the altered rocks under oxydized state on the surface. It was fine, at least no rain, before and during the explosions and the mud flow ran down along the dry gully. So the hot water was purely derived from the inner part of the volcano and the mud flow was not brought about by rain fall after deposition of ejecta on the volcano. The mud flow must have been formed endogenously under the volcano where the katamorphism of the rocks forming the volcano had advanced owing to chemical action of volcanic gas in the long period before the eruption.  相似文献   

12.
The maximum height attained by a volcanic eruption cloud is principally determined by the convective buoyancy of the mixture of volcanic gas + entrained air + fine-sized pyroclasts within the cloud. The thermal energy supplied to convection processes within an eruption cloud is derived from the cooling of pyroclastic material and volcanic gases discharged by an explosive eruption. Observational data from six recent eruptions indicates that the maximum height attained by volcanic eruption clouds is positively correlated with the rate at which pyroclastic material is produced by an explosive eruption (correlation coefficient r = + 0.97). The ascent of industrial hot gas plumes is also governed by the thermal convection process. Empirical scaling relationships between plume height and thermal flux have been developed for industrial plumes. Applying these scaling relationships to volcanic eruption clouds suggests that the rate at which thermal energy is released into the atmosphere by an explosive eruption increases in an approximately linear manner as an eruption's pyroclastic production rate increases.  相似文献   

13.
The 2002 eruption of Nyiragongo volcano constitutes the most outstanding case ever of lava flow in a big town. It also represents one of the very rare cases of direct casualties from lava flows, which had high velocities of up to tens of kilometer per hour. As in the 1977 eruption, which is the only other eccentric eruption of the volcano in more than 100 years, lava flows were emitted from several vents along a N–S system of fractures extending for more than 10 km, from which they propagated mostly towards Lake Kivu and Goma, a town of about 500,000 inhabitants. We assessed the lava flow hazard on the entire volcano and in the towns of Goma (D.R.C.) and Gisenyi (Rwanda) through numerical simulations of probable lava flow paths. Lava flow paths are computed based on the steepest descent principle, modified by stochastically perturbing the topography to take into account the capability of lava flows to override topographic obstacles, fill topographic depressions, and spread over the topography. Code calibration and the definition of the expected lava flow length and vent opening probability distributions were done based on the 1977 and 2002 eruptions. The final lava flow hazard map shows that the eastern sector of Goma devastated in 2002 represents the area of highest hazard on the flanks of the volcano. The second highest hazard sector in Goma is the area of propagation of the western lava flow in 2002. The town of Gisenyi is subject to moderate to high hazard due to its proximity to the alignment of fractures active in 1977 and 2002. In a companion paper (Chirico et al., Bull Volcanol, in this issue, 2008) we use numerical simulations to investigate the possibility of reducing lava flow hazard through the construction of protective barriers, and formulate a proposal for the future development of the town of Goma.  相似文献   

14.
 Lascar Volcano (5592 m; 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor. Received: 12 December 1996 / Accepted: 6 May 1997  相似文献   

15.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   

16.
Causes and consequences of pressurisation in lava dome eruptions   总被引:3,自引:0,他引:3  
High total and fluid pressures develop in the interior of high-viscosity lava domes and in the uppermost parts of the feeding conduit system as a consequence of degassing. Two effects are recognised and are modelled quantitatively. First, large increases in magma viscosity result from degassing during magma ascent. Strong vertical gradients in viscosity result and large excess pressures and pressure gradients develop at the top of the conduit and in the dome. Calculations of conduit flow show that almost all the excess pressure drop from the chamber in an andesitic dome eruption occurs during the last several hundred metres of ascent. Second, microlites grow in the melt phase as a consequence of undercooling caused by gas loss. Rapid microlite growth can cause large excess fluid pressures to develop at shallow levels. Theoretically closed-system microlite crystallization can increase local pressure by a few tens of MPa, although build up of pressure will be countered by gas loss through permeable flow and expansion by viscous flow. Microlite crystallization is most effective in causing excess gas pressures at depths of a few hundred metres in the uppermost parts of the conduit and dome interior. Some of the major phenomena of lava dome eruptions can be attributed to these pressurisation effects, including spurts of growth, cycles of dome growth and subsidence, sudden onset of violent explosive activity and disintegration of lava during formation of pyroclastic flows. The characteristic shallow-level, long-period and hybrid seismicity, characteristic of dome eruptions, is attributed to the excess fluid pressures, which are maintained close to the fracture strength of the dome and wallrock, resulting in fluid movement during formation of tensile and shear fractures within the dome and upper conduit.  相似文献   

17.
The magma eruption rates of Merapi volcano form 1890 to 1992 are re-examined chronologically. For this volcano, movements of extruded lavas and domes as well as their extrusions are important because they control the modes of the subsequent activities and cause nuées ardentes and lahars. The monthly eruption rates varied widely, but the cumulative volume of lavas has increased linearly and is expressed as 0.1x106 m3/month. The magma production rate of this volcano may have been constant for these 100 years. Recurrent excessive effusion of lavas is tentatively interpreted by assuming a magma reservoir. The averaged eruption rate is small in comparison with other volcanoes such as Nyramuragia, Kilauea and Vesuvio. However, it is remarkable that the activity has been continuous for these 100 years and the total amount of lava discharged during this period reached more than 108 m3. A simple model for the formation of the 1992 lava dome is presented. The viscosity of the lavas is probably between 106 and 107 P and the length of the magma conduit is probably less than 10 km.  相似文献   

18.
At Bear Lake, in the Flin Flon-Snow Lake greenstone belt of Manitoba, 400+ m of thick-to very thick-bedded, generally ungraded, basaltic andesite tuff-breccia, breccia, and lapilli-tuff are intercalated with pillowed lava flows in the upper part of an early Proterozoic submarine basaltic andesite shield volcano. The fragmental rocks comprise angular, amygdaloidal blocks and lapilli, many with partial chilled selvages, in a matrix of blocky, non-amygdaloidal to highly amygdaloidal vitric basaltic andesite ash and small lapilli. Minor thin-to medium-bedded, commonly normally graded tuff occurs in the upper part of the sequence. Clasts in fragmental beds consistently have higher amygdule contents than intercalated lava flows. Although similar to pillow-fragment breccias, the Bear Lake fragmental rocks were produced by extended surtseyan-type, phreatomagmatic eruptions, with associated fire fountain activity, at a progressively subsiding, shallow water vent. Periodic tephra slumping generated debris flows that transported particles down the uppe, gentle slope of the volcano to a depositional site at a water depth of less than 1 km. Turbidity currents probably carried much fine tephra to deeper water; tuff was deposited in the preserved section only after explosive volcanism ceased.  相似文献   

19.
天池火山东北侧造盾玄武岩可划分出8个流动单元,熔岩流的流动距离主要集中在30~50km,熔岩流宽度以5km左右为主。通过由野外调查获得的天池火山东北侧不同熔岩流单元的地表坡度、熔岩流厚度等,结合温度、密度与黏度等物理参数,按照熔岩流速度公式恢复的头道组和早白山组0.5m厚晶体含量5%的玄武岩熔岩流流速集中在0~1m/s之间。晶体含量为30%、厚度为0.5m的晚白山组和老房子小山组玄武岩熔岩流的流动速度集中在0~0.12m/s之间。厚度增大至2m左右,晶体含量不变的头道组和早白山组的玄武岩熔岩流流动速度可加快至11m/s。天池火山2m厚的碱性熔岩流在12h内达到或接近了它的最远距离,而各组内2m厚拉斑玄武岩熔岩流在20h内接近了最远距离。0.5m厚的熔岩流在10d内接近最大距离。50km是预计的熔岩流长度,在未来制定减灾措施时,可将此长度作为重要依据之一。天池火山熔岩流灾害主要表现为熔岩流动时对房屋建筑、农田、道路、林地、电站的毁坏,火灾及大量的人口伤亡  相似文献   

20.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号