首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg0(gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples. We find that dissolved elemental Hg0(aq) and particulate-bound Hg (HgP) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg0aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we provide a first quantitative comparison of the relative intensity of aqueous transport and atmospheric emissions of mercury at Mount Etna, a very active basaltic volcano.  相似文献   

2.
Atmospheric mercury concentrations were measured during a nautical expedition on the Atlantic Ocean between Hamburg (54°N, 10°E) and Santo Domingo (20°N, 67°W). In addition, samples were taken during flights on a commerical aircraft in the upper and middle troposphere between 60°N and 55°S, mostly over the Pacific Ocean. The data obtained in the lower troposphere over the Northern Atlantic show considerable variation in the Hg concentrations, with values ranging between 1 and 11 ng/m3; the average concentration was found to be 2.8 ng/m3. The upper tropospheric data show an interhemispheric difference with average values of 1.45 ng/m3 and 1.08 ng/m3 in the Northern and Southern Hemisphere, respectively. This suggests that mercury production occurs predominantly over the continents both by natural and anthropogenic processes. The mercury content in aerosols was found to be 0.3 ng/m3, or one-tenth of the atmospheric concentration. The data indicate a mean residence time of mercury in the atmosphere of a few months to one year.  相似文献   

3.
— Atmospheric particulate concentration for total suspended particles (TSP) and for PM10 (particulate matter under 10 micron) was measured in Jalan Braga and ITB campus, Bandung. Six samples were collected over one- or two-day time periods using High Volume Sampler (HVS) for TSP and Low Volume Sampler (LVS) or Anderson Cascade Impactor for PM10. Samples were further analyzed to determine concentrations of metals, sulfate and nitrate. Concentration of NOx (NO and NO2) was also measured hourly and simultaneously during the sampling period. The results from this study show that the atmospheric particulate concentration in Jalan Braga for TSP ranged from 304.04 to 363.17, and for PM10 concentration ranged from 277.02 to 336.44 μg/m3. The lead concentrations were 1.42–2.37 μg/m3 in the TSP and 0.81–1.57 μg/m3 in the PM10. The nitrate concentrations were 5.89–6.51 μg/m3 and 2.27–3.45 μg/m3 for the TSP and PM10, respectively. The hourly NOx concentration varied between 0.14–0.35 ppm. The total elements (metals, sulfate and nitrate) found in the samples contribute from 20 to 25% of the total particulate concentration.  相似文献   

4.
Ambient air polycyclic aromatic hydrocarbon (PAH) samples were collected at a suburban (n = 63) and at an urban site (n = 14) in Izmir, Turkey. Average gas‐phase total PAH (∑14PAH) concentrations were 23.5 ng m?3 for suburban and 109.7 ng m?3 for urban sites while average particle‐phase total PAH concentrations were 12.3 and 34.5 ng m?3 for suburban and urban sites, respectively. Higher ambient PAH concentrations were measured in the gas‐phase and ∑14PAH concentrations were dominated by lower molecular weight PAHs. Multiple linear regression analysis indicated that the meteorological parameters were effective on ambient PAH concentrations. Emission sources of particle‐phase PAHs were investigated using a diagnostic plot of fluorene (FLN)/(fluorine + pyrene; PY) versus indeno[1,2,3‐cd]PY/(indeno[1,2,3‐cd]PY + benzo[g,h,i]perylene) and several diagnostic ratios. These approaches have indicated that traffic emissions (petroleum combustion) were the dominant PAH sources at both sites for summer and winter seasons. Experimental gas–particle partition coefficients (KP) were compared to the predictions of octanol–air (KOA) and soot–air (KSA) partition coefficient models. The correlations between experimental and modeled KP values were significant (r2 = 0.79 and 0.94 for suburban and urban sites, respectively, p < 0.01). Octanol‐based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. However, overall there was a relatively good agreement between the measured KP and soot‐based model predictions.  相似文献   

5.
A new multidisciplinary study, combining geology, petrography, and geochemistry, on the rocks of the isolated hill of Mount Calanna (Mount Etna, Italy) has provided evidence for the existence of a dyke swarm, formed by more than 200 dykes distributed over an area of ~0.7 km2, with an intensity of intrusion up to 40%. All bodies are deeply altered, and the geological and mesostructural surveying of 132 dykes revealed that they intruded in E–W direction, with an average dip of 60°. The faults affecting the outcrop have in general an E–W strike and dip of ~55°: these have all normal motion and have been interpreted as coeval with the dykes. This interpretation contrasts with the previous hypothesis that considered Mount Calanna as a thrust resulting from compressive deformation resulting from the gravitational spreading of the volcanic edifice. Mount Calanna is here interpreted as the uppermost portion of a vertically extensive magmatic plexus that fed the eruptive activity of one (or more) eruptive center/s sited in the Valle del Bove area. Measurements of the apparent densities on 23 dykes and host rock samples give an average value of 2,420 kg/m3 for the entire complex, ~15% lower than the density expected for hawaiitic magma, placing an important constraint on the geophysical identification of similar structures. Considering that Mount Etna is not an old eroded edifice but an active and growing volcano, the exposure of this subvolcanic structure can be regarded as exceptional. Its geometry and physical characteristics can be thus regarded as an interesting example of the present-day shallow plumbing system of Mount Etna as well as of other basaltic volcanoes.  相似文献   

6.
Abstract

The aim of this study was to assess the effect of land application of sewage sludge on phosphorus (P) losses during intense rainfall. Three rainfall simulations (40 mm h?1 of 30 min duration) were conducted on a field amended with sewage sludge. The overland flow water (OFW) was monitored and sampled every minute. The suspended solid, the dissolved and total phosphorus (respectively SS, TP and DP) concentrations were analysed. The forms of particulate bound P (PP) were investigated. Several results stem from this experiment: (a) sludge application induced a large increase in the DP content of the OFW; the concentrations obtained (0.15–0.57 mg l?1) were shown to result from desorption processes from the SS; and (b) in contrast, sludge application affected neither the SS content nor the TP concentration of OFW (9.5 g mg l?1 P, consisting of PP for 95%). However, sludge preserved the structure of soil surface and led to a 45% decrease in runoff rate (150 m3 ha?1 collected on the test surface compared to 290 m3 ha?1 on a reference). This indirectly reduced TP losses (2.7 kg ha?1 on the reference surface compared to 1.4 kg ha?1 on the test surface).  相似文献   

7.
Based on three continuous in situ underwater light field measurement under different wind waves conditions in Longgan Lake, Meiliang Bay of Taihu Lake in July 2003 and littoral zone near TLLER in July 2004, respectively, the effects of sediment resuspension caused by wind waves on PAR diffuse attenuation, absorption coefficients and euphotic depths are analyzed. In Longgan Lake, PAR diffuse attenuation coefficients during small, middle and large wind waves were 1.74, 2.02 and 2.45 m?1, respectively, and the corresponding PAR spectral diffuse attenuations ranged from 0.98 to 2.97, 1.34 to 3.95 and 1.80 to 5.40 m?1, respectively. In Meiliang Bay, PAR diffuse attenuation coefficients were 2.63, 3.72, 4.37 m?1 during small, middle and large wind waves. PAR diffuse attenuation coefficients increased by 41% and 66% from small to middle, large wind waves, respectively. Absorption coefficients integrated over the range of PAR of CDOM, phytoplankton were 0.26, 0.28 m?1; 0.76, 0.49 m?1, respectively during middle and large wind waves. Absorption coefficients integrated over the range of PAR of non-algal particulate matter and total suspended particulate matter increased from 0.94 to 1.73 m?1, and from 1.70 to 2.22 m?1, respectively during middle and large wind waves. Relative contributions of absorption coefficients of non-algal particulate matter to total absorption coefficient integrated over the range of PAR were 44.14%, 65.05%, respectively, during middle and large wind waves. PAR euphotic depths decreased by 0.40, 0.19, 0.20 m from middle to large wind waves in Longganhu Lake, Meliang Bay and littoral zone near TLLER. Significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and total suspended particulate matter, wind velocity, wave height. Most significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and inorganic suspended particulate matter but low correlations for chlorophyll a, dissolved organic carbon. Increase of total suspended particulate matter, especially inorganic suspended particulate matter caused by wind waves was the dominant factor affecting underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River based on observations at three stations.  相似文献   

8.
We present concentrations of environmentally available (unfiltered acidified 2% v/v HNO3) As, Cu, Cd, Pb, V, Sr, and major ions including Ca2+, Cl?, and SO42? in a July 2005 and a March 2006 shallow snow profile from the lower Eliot Glacier, Mount Hood, Oregon, and its proglacial stream, Eliot Creek. Low enrichment factors (EF) with respect to crustal averages suggests that in fresh March 2006 snow environmentally available elements are derived primarily from lithogenic sources. Soluble salts occurred in lower and less variable concentrations in July 2005 snow than March 2006. Conversely, environmentally available trace elements occurred in greater and more variable concentrations in July 2005 than March 2006 snow. Unlike major solutes, particulate‐associated trace elements are not readily eluted during the melt season. Additionally, elevated surface concentrations suggest that they are likely added throughout the year via dry deposition. In a 1‐h stream sampling, ratios of dissolved (<0·45 µm) V:Cl?, Sr:Cl?, and Cu:Cl? are enriched in the Eliot Stream with respect to their environmentally available trace element to Cl? ratios in Eliot Glacier snow, suggesting chemical weathering additions in the stream waters. Dissolved Pb:Cl? is depleted in the Eliot Stream with respect to the ratio of environmentally available Pb to Cl? in snow, corresponding to greater adsorption onto particles at greater pH values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This article presents results of mercury in surface waters from Hunza River basin, Northern Areas, Pakistan. Small‐scale gold mining activities along the Hunza and Gilgit rivers are long known to be discharging mercury in the amalgamation and roasting processes. Previous studies reported high mercury concentrations in soils close to mining operations as well as serious health problems for miners. However, none of the studies have focused on the level of contamination in aqueous environments. This is the first study on the investigation of source and fate of sediment and river‐borne mercury in the Hunza River. The samples collected near gold panning sites showed higher mercury concentrations than critical levels established by the U.S. Environmental Protection Agency. The observed dissolved mercury concentrations ranged from 5.10 to 25.25 ng/l, whereas particulate‐bound mercury ranged from 4.85 to 154.62 ng/l. Particulate‐phase mercury corresponded to more than 75% of the total observed mercury concentrations for all of the sampled rivers. Thus, suspended sediments represented the major pathway of the riverine mercury transport. A mass balance calculation suggested an annual mercury flux of 48.6 g/km2 into the Hunza River basin. The samples collected from the most affected river, the Shimsal River, averaged to have 108 ng/l total mercury. This amount was close to the average soil mercury data of 151 ng/l as reported by the Pakistan Mineral Development Corporation in 2001. The dominant source of contamination was shown to be the leaching of large quantities of mercury from the mercury‐rich sediment and flood plain soil into the rivers, rather than the direct release from mining activities. Significant decrease in both dissolved and particulate‐bound mercury concentration downstream of Attabad Lake suggested that mercury is being accumulated or consumed in the lake. Although minimization or elimination of mercury loses from the mining process seems important for the well‐being of the miners, preventing the remobilization of accumulated mercury is equally important in mercury control in this region. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In the catchment area of the Pomeranian Bay an average mercury concentration of 178 ng/l in precipitation was determined. Eight different flowing waters showed mean concentrations between 105 ng/l (?upawa) and 500 ng/l (Odra), a pronounced annual cycle having been demonstrated for the concentrations and for the freights with the minimum in February/March and the maximum in August/September. The total freight of the eight rivers amounts to 19.5 t/a, the share of the Wisla being 11 t/a. The ratio between the mercury precipitation of 335 to 410 μg/m2a Hg and the run-off varies of 30 … 75 μg/m2a Hg for the individual river basins between 0.08 and 0.21. In the Baltic Sea, the mercury concentrations are 40 ng/l in the open sea, 50 ng/l in the coastal region and 290 … 390 ng/l near the estuaries. Trough the eight investigated rivers about 48 km3/a water run off into the Baltic Sea with about 20 t/a Hg. The total introduction of Hg into the Baltic Sea is estimated at 100 t/a with the river water, 35 t/a with precipitation and 35 t/a with dust.  相似文献   

11.
Gas emissions from Tatun volcanic group, northern Taiwan, were studied for the first time using a multi-component gas analyser system (Multi-GAS) in combination with Giggenbach flask methods at fumaroles and mud pools at Da-you-keng (DYK) and Geng-tze-ping (GZP). CO2/S molar ratios observed at DYK ranged from 3–17, similar ratios were observed using a Multi-GAS sensor box of 8–16. SO2 at GZP was low, higher concentrations were observed at DYK where SO2/H2S ratios were close to 1 for both methods. A lower CO2/H2S ratio was measured via Giggenbach flask sampling (7.2) than was found in the plume using the gas sensor at GZP (9.2). This may reflect rapid oxidation of H2S as it mixes with background air. Gaseous elemental mercury (GEM) levels were observed in the fumarole gases using a portable mercury spectrometer. These are the first such measurements of mercury at Tatun. Mean GEM concentrations in the fumarole plumes were ∼ 20 ng m− 3, with much higher concentrations observed close to the ground (mean [GEM] 130 and 290 ng m− 3 at DYK and GZP, respectively). The GEM in the fumarole plume was elevated above concentrations in industrial/urban air in northern Taiwan and the increase in GEM observed when the instrument was lowered suggests high levels of mercury are present in the surrounding ground surface. The GEM/CO2 (10− 8) and GEM/S (10− 6) ratios observed in the fumarole gases were comparable to those observed at other low-temperature fumaroles. Combining the Hg/CO2 ratio with a previous CO2 flux value for the area, the annual GEM flux from the Tatun field is estimated as 5–50 kg/year.  相似文献   

12.
In 1996 and 1997, two high-resolution magnetic surveys, one on land and the other at sea, were carried out on the lower eastern flank of Mount Etna. The magnetic surveys, covering an area of about 400 km2, aimed to elucidate the relationships between the main tectonic and morphologic features of this flank of Mount Etna. Major features include widespread NNW- and NNE-trending active faults and the Valle del Bove, a depression considered to be the source area of the Chiancone deposit, the largest Etnean volcaniclastic sequence. Magnetic surveys show anomalies that roughly follow the trend of active main structures. Although few magnetization measurements are available for the most representative outcrops of the lower eastern side of Mount Etna, interpretation of the anomalies defines the underground geometry of the Chiancone deposit and its relationship with volcano stratigraphic units and the underlying sedimentary rocks. In particular, a volume of about 14 km3 was ascribed to the Chiancone deposit. Such a large amount of material was likely produced by a catastrophic event, and deposited at different periods at the exit of the Valle del Bove in an area produced by the interaction, on a regional scale, of the main tectonic structures affecting this flank of the volcano.  相似文献   

13.
The 1983 hawaiite of Mount Etna was sampled and analyzed for groundmass and mineral compositions, rare-earth-element concentrations and Sr-Nd isotope ratios.Microprobe data for coexisting mineral phases and glass show crystallization temperatures of around 1100° C from a rather differentiated hawaiite magma at rather highfO2 (10–8 at 1100° C), well above the QFM buffer.The hawaiites are characterized by a marked enrichment in the light REE similar to other alkaline magmas: the (Ce)N/(Yb)N is greater than 10, a feature these hawaiites have in common with alkaline magmas erupted earlier on Mount Etna. Since the Ce/Yb ratio cannot be affected by fractionation of clinopyroxene and plagioclase, it is taken as an accurate reflection of the LREE-enriched nature of the hawaiites. From this point of view, the Etnean hawaiites are identical to within-plate alkaline magmas erupted on the Hawaiian islands.This similarity extends to the Nd-Sr isotope features. Two hawaiites have87Sr/86Sr=0.70346 and 0.70352 and143Nd/144Nd=0.51286 and 0.51284. These data indicate a source similar to oceanic-island basalts, a source depleted in Rb/Sr and Nd/Sm for some period of time. The Sr isotope data are identical to that previously reported for Mount Etna.Extraction of hawaiites from depleted source regions requires either recent enrichment events, mixing of asthenospheric and lithospheric melts, or variable degrees of melting. At present, the data do not allow a clear decision.The peculiar tectonic setting of Mount Etna, between the relatively undeformed African foreland and the active Aeolian volcanic islands, may suggest contributions to the source region from subduction and within-plate processes. Etnean lavas have a geochemical imprint of subduction-related enrichment processes, and they also share petrological and chemical features identical to oceanic-island basalts whose source region has been affected by within-palte enrichment processes.Paper read at the IAVCEI Scientific Assembly, Giardini Naxos, September 16–21, 1985  相似文献   

14.
PCB (polychlorinated biphenyls) contamination and its relationship to SPM (suspended particulate material) have been studied in the Seine Estuary, which is heavily polluted by these persistent and hydrophobic man-made chemicals. Two sampling cruises have been performed during different freshwater discharge conditions. PCB and SPM concentrations, as well as grain-size distributions in the particulate material have been determined. Water samples have been collected at fixed positions during a tidal cycle, and along transects within the estuary.PCB concentrations vary from 2 ng 1−1 in the marine zone to 250 ng 1−1 within the estuary, and reach 1.3 × 103 ng 1−1 in the turbidity maximum zone. During a tidal cycle, low PCB concentrations are observed at high water, and are in the same range in February as in July. High PCB contamination is observed at low water, but PCB concentrations are about five times higher in February. SPM and PCB variations are well correlated in both periods of observations. Higher PCB contamination during February is explained by higher SPM inputs, mainly due to particles of riverine origin. The transport of PCB within the estuary depends on the quantity and the grainsize composition of suspended material, which varies according to freshwater discharge and tidal amplitude.  相似文献   

15.
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.  相似文献   

16.
A simple system was designed using7LiOH-impregnated filters to collect acidic gases from ambient air and from highly concentrated volcanic plumes or gas streams. These filters were developed for analysis using instrumental neutron activation analysis, but other analytical techniques could be used as well. The sampling system was designed to use a series of 1–3 M7LiOH-impregnated filters to collect high concentrations of acidic gases found in gas plumes of active volcanoes. The filters are quantitative for SO2 and the halide acids when sufficient base is present to neutralize the acidic species. Extremely high concentrations of SO2 may not be collected quantitatively since SO2 is a relatively weak Lewis acid compared to the halide acids. The acidic oxides of Sb, As, and Se were also collected quantitatively. A particle filter preceded the impregnated filters in order to remove particles from the fumes. This system has proven effective under difficult sampling conditions and, since it is portable and light weight, it could be used for many volcanological applications where high levels of acidic gaseous phase species need to be collected.  相似文献   

17.
 The 1991–1993 lava flow is the most voluminous flow erupted at Mount Etna, Sicily, in over 300 years. Estimates of the volume obtained by various methods range from 205×106 m3 (Tanguy 1996) to over 500×106 m3 (Barberi et al. 1993). This paper describes the results of an electronic distance measurement (EDM)-based field survey of the upper surface of the 1991–1993 flow field undertaken in 1995. The results were digitised, interpolated and converted into a digital elevation model and then compared with a pre-eruption digital elevation model, constructed from a 1 : 25 000 contour map of the area, based on 1989 aerial photographs. Our measurements are the most accurate to date and show that the 1991–1993 lava flow occupies a volume of 231±29×106 m3. Received: 20 July 1996 / Accepted: 5 November 1996  相似文献   

18.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The main aim of this research was to assess the mercury transport from an estuarine basin with a background of anthropogenic contamination during a spring tidal cycle (year 2009) and compare it with two previous tidal cycles (years 1994 and 1999), as part of a long‐term monitoring program. Results showed that effective mercury transport occurs both in the dissolved and particulate fractions (0.18 and 0.20 kg per tidal cycle, respectively), and despite an overall decrease in environmental contamination, results more than double previous findings on particulate transport in the system. These findings result essentially from changes in the tidal prism (net export of 2 million m3 of water), given that both dissolved and particulate concentrations did not increase over time. Hydrodynamic simulations were performed to evaluate the effect of physical disturbance (dredging) and weather events (increased freshwater flow) in these processes, and results suggest the increased freshwater flow into the system as the main forcing function for the mercury transport increment. These results highlight the importance of long‐term monitoring programs, since despite an overall improvement in local contamination levels, the enhancement of transport processes through hydrological changes increases environmental pressure away from the contamination source. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号