首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

2.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

3.
Sea water basalt interaction in spilites from the Iberian Pyrite Belt   总被引:2,自引:0,他引:2  
Low grade hydrothermally metamorphosed mafic rocks from the Iberian Pyrite Belt are enriched in 18O relative to the oxygen isotopic ratio of fresh basalt (+6.5±1). The observed 18O whole rock values range from +0.87 to +15.71 corresponding to positive isotopic shifts of +5 to +10, thus requiring isotopic exchange with fluids under conditions of high water:rock ratios at low temperatures. The lowest 18O observed corresponds to an albitized dolerite still and is compatible with independent geochemical data suggesting lower water: rock ratios for the alteration of these rocks.The isotope data are consistent with the hypothesis that the spilites from the Pyrite Belt were produced by interaction of basaltic material with sea water.Significant leaching of transition metals from the mafic rocks during alteration coupled with available sulphur isotopic data for the sulphide ores also suggest that sea water may have played an important role in the formation of ore deposits in the Iberian Pyrite Belt.  相似文献   

4.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

5.
Sulfur isotope analyses were made on 14 alunites from volcanic and sedimentary rocks widely different in chemistry and age from southern Tuscany and northern Latium, central Italy. The 34S values range from +0.7 to +9.6, and appear not to be related to the nature of the host rock. Geological and isotopic evidence suggests that all the alunites formed by supergenic oxidation of sulfides. Sulfides occurring with alunites in the volcanic rocks of Latium can be divided into an isotopically light group of probably magmatic origin (34S=–1.5 to +3.4) and a heavy one with 34S=+6.0 to +10.3, tentatively interpreted as deposited by hydrothermal fluids that leached sulfides of similar 34S/32S from the deep basement. Such an interpretation is consistent with recent studies indicating that in the perityrrhenian belt of Latium exists a continuation, at depth, of the Tuscan stratigraphic series, rich in sulfides with 34 from +6 to +12.  相似文献   

6.
Emerald deposits in Swat, northwestern Pakistan, occurring in talc-magnesite and quartz-magnesite assemblages, have been investigated through stable isotope studies. Isotopic analyses were performed on a total of seven emeralds, associated quartz (seven samples), fuchsite (three samples) and tourmaline (two samples) from the Mingora emerald mines. The oxygen isotopic composition ( 18O SMOW) of emeralds shows a strong enrichment in18O and is remarkably uniform at + 15.6 ± 0.4 (1,n = 7). Each of the two components of water in emerald (channel and inclusion) has a different range of hydrogen isotopic composition: the channel waters being distinctly isotopically heavier (D = –51 to –32 SMOW) than the other inclusion waters (D = –96 to –70 SMOW). Similarly the oxygen isotopic compositions of tourmaline and fuchsite are relatively constant ( 18O = + 13 to + 14 SMOW) and show enrichment in18O. The 18O values of quartz, ranging from + 15.1 to + 19.1 SMOW, are also high (+ 16.9 ± 1.4 1, n = 7). The meanD of channel waters measured from emerald (–42 ± 6.6 SMOW) and that of fluid calculated from hydrous mineralsDcalculated (–47 ± 7.1 SMOW) are consistent with both metamorphic and magmatic origin. However, the close similarity between the measuredD values of the hydroxyl hydrogen in fuchsite (–74 to –6 SMOW) and tourmaline (–84 and –69 SMOW) with pegmatitic muscovite and tourmaline suggests that the mineralization was probably caused by modified (18O-enriched) hydrothermal solutions derived from an S-type granitic magma. The variation in the carbon and oxygen isotopic composition of magnesite, locally associated with emerald mineralization, is also very restricted ( 13 –3.2 ± 0.7%, PDB; 18O + 17.9 ± 1.27 SMOW). On the basis of the isotopic composition of fluid ( 13C –1.8 ± 0.7 PDB; 18O + 13.6 ± 1.2 SMOW calculated for the 250-550 °C temperature), it is proposed that the Swat magnesites formed due to the carbonation of previously serpentinized ultramafic rocks by a CO2-bearing fluid of metamorphic origin.  相似文献   

7.
In the eastern, external part of the Grenvillian Belt in SW Sweden, five formations of granitic rocks were found in the basement of the Dalslandian Supracrustal Group. The granitic rocks have been strongly recrystallized but have preserved most of their granitic texture in the process. Most magmatic crystals have been pseudomorphed by metamorphic minerals: quartz, albite, chlorite, biotite, white mica, epidote, titanite, hematite, pyrite and carbonate. Two of the formations have subsequently been affected by a cataclastic deformation and at present consist of mylogneisses. 18O whole-rock values for the granitic rocks vary from +3.0 to +11.1. Quartz-apatite, quartz-zircon and quartz-titanite pairs show 18O/16O fractionations corresponding to equilibrium temperatures of 550–700° C, which are believed to reflect in the main continued closed-system isotopic exchange at high temperatures following solidification. In contrast highly positive 18O/16O fractionations for quartz-K-feldspar, quartz-biotite, quartz-chlorite and quartz-sericite pairs in some granitic samples indicate that these rocks have exchanged oxygen with heated, meteoric, H2O dominated fluids. Other granitic samples, however, show virtually undisturbed magmatic 18O/16O fractionation values for the same mineral pairs, even though these rocks are equally altered.It is concluded that all granitic rock units recrystallized under greenschist facies conditions during the infiltration of fluids under the influence of hydrothermal convection systems set up by the intrusion of the granitic plutons. The fluids probably had a range of 18O values from ca. -14 to ca. +10, indicating the mixing of distinct fluid reservoirs, one of meteoric origin and the others of magmatic and/or metamorphic origin. The temperature of alteration is estimated at 450–500° C.Estimation of pre-alteration 18O whole rock values for the five granitic units suggests that three units should be assigned a dominantly S-type origin, where as the other two units may partly or wholly have an I-type origin.  相似文献   

8.
Oxygen-isotope compositions have been measured for whole-rock and mineral samples of host and hydrothermally altered rocks from three massive sulfide deposits, Centennial (CL), Spruce Point (SP), and Anderson Lake (AL), in the Flin Flon — Snow Lake belt, Manitoba. Wholerock 18O values of felsic metavolcanic, host rocks (+8.5 to +16.1) are higher than those of altered rocks from the three deposits. The 18O values of altered rocks are lower in the chlorite zone and muscovite zone-I (CL=+ 5.3; SP=+5.4 to +8.3; AL= +3.7 to +5.9) than in the gradational zone (CL= +9.9 to +11.7; SP= +8.4 to +9.8; AL= + 6.6 to +7.7). Muscovite schist (Muscovite Zone-II) enveloping the Anderson Lake ore body has 18O values of +7.2 to +8.3. Quartz, biotite, muscovite, and chlorite separated from the altered rocks have lower 18O values compared to the same minerals separated from the host rocks. However, isotopic fractionation between mineral-pairs is generally similar in both host and altered rocks.It is interpreted that differences in the oxygen-isotope compositions of the altered and host rocks were produced prior to metamorphism, during hydrothermal alteration related to ore-deposition. Isotopic homogenization during metamorphism occurred on a grain-to-grain scale, over no more than a few meters. The whole-rock 18O values did not change significantly during metamorphism. The generally lower 18O values of altered rocks, the Cu-rich nature of the ore and the occurrence of the muscovite zone-II at Anderson Lake are consistent with the presence of higher temperature hydrothermal fluids at Anderson Lake than at the Centennial and Spruce Point deposits.  相似文献   

9.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

10.
The carbon and oxygen isotopic composition of Fe-carbonate ore and its calcitic to dolomitic Devonian host rocks at the Steirischer Erzberg siderite deposit (Greywacke zone, Upper Austroalpine Unit) were determined in order to constrain the source and nature of the Fe-rich mineralizing fluid. The 18O-values obtained for various Fe-carbonate generations and the carbonate host lie within a similar range between + 14.6 and + 21.6 (V-SMOW). No good correlation exists between the relative ages of the carbonate phases and their O isotopic composition. The variation in 18O-values is due to metamorphic recrystallization with locally variable fluid/rock ratios. The average 13C-value of the carbonate host is +0.5 ± 1.2 (PDB) which corresponds well to worldwide Phanerozoic marine carbonate values. The first Fecarbonate generation has slightly lower 13C-values, on average -1.4 ± 0.8 (PDB). Recrystallization of both the carbonate host minerals and the ankerite/siderite led to significantly lower 13C-values of -4.2 ± 0.6 and-4.7 ± 0.7, respectively. Within the basal breccia of the post-Hercynian transgression series matrix calcite/ dolomite shows an average 13C-value of -2.9 ± 0.7, and matrix siderite/ankerite an average value of-4.1 ± 0.4. These data, together with Sr isotope data published previously, strongly support a late-diagenetic or epigenetic first Fe-mineralization from convecting formation waters. They ascended along extension faults and were driven by an increased heat flow caused by crustal thinning during a Devonian rifting phase that initiated the separation of the Noric terrane from Africa. A potential source of the Fe could have been the underlying Ordovician acid volcanics. Regional metamorphism related to collision tectonics in the Late Carboniferous (Hercynian) and later during the Alpine orogeny, caused intensive recrystallization and partial mobilization of the various carbonate phases.  相似文献   

11.
Graphite occurs in two distinct textural varieties in syntectonic granitoids of the New Hampshire Plutonic Series and in associated metasedimentary wall rocks. Textural characteristics indicate that coarse graphite flakes were present at an early stage of crystallization of the igneous rocks and thus may represent xenocrystic material assimilated from the wall rocks. The range of 13C values determined for flake graphite in the igneous rocks (–26.5 to –13.8) overlaps the range for flake graphite in the wall rocks (–26.0 to –16.7), and spatial correlation of some 13C values in the plutons and wall rocks supports the assimilation mechanism. The textures of fine-grained irregular aggregates or spherulites of graphite, on the other hand, indicate that they formed along with secondary hydrous silicates and carbonates during retrograde reactions between the primary silicates and a carbon-bearing aqueous fluid phase. Relative to coexisting flake graphite, spherulitic graphite shows isotopic shifts ranging from 1.9 higher to 1.4 lower in both igneous and metasedimentary samples.The observed isotopic shifts and the association of spherulitic graphite with hydrous silicates are explained by dehydration of C-O-H fluids initially on or near the graphite saturation boundary. Hydration of silicates causes dehydration of the fluid and drives the fluid composition to the graphite saturation surface. Continued dehydration of the fluid then requires coprecipitation of secondary graphite and hydrous silicates and drives the fluid toward either higher or lower CO2/CH4 depending upon the inital bulk composition. Isotopic shifts in graphite formed at successive reaction stages are explained by fractionation of 13C between secondary graphite and the evolving fluid because 13C is preferentially concentrated into CO2 relative to CH4.Epigenetic graphite in two vein deposits assiciated with the contacts of these igneous rocks is generally enriched in 13C (–15.7 to –11.6) relative to both the igneous and wall-rock 13C values. Values of 13C vary by up to 3.4 within veins, with samples taken only 3 cm apart differing by 2.0 These variations in 13C correlate with textural evidence showing sequential deposition of different generations of graphite in the veins from fluids which differed in proportions of carbon species or isotopic composition (or both).  相似文献   

12.
The Ordovician volcano-sedimentary succession of Erquy (northern Brittany) is made of immature sediments thermally metamorphosed at the contact of intruding basic sills. Pillow lavas constitute the upper part of the sequence. The trace element geochemistry of sills and pillow lavas suggests that they were derived from a tholeiitic source located beneath a passive margin. This volcanic sequence was metamorphosed under low to moderate greenschist facies conditions. In this study the direction and amplitude of chemical and isotopic fluxes in the basalt-sediment-water system were established and the oxygen and hydrogen isotope compositions of the aqueous fluid that reacted with the volcanic rocks were characterized. Cationic thermometry on chlorites and isotopic thermometry on plagioclase-chlorite pairs indicate closure metamorphic temperatures in the range 200–250°C for the basaltic sills. Stable isotope compositions of iron-rich chlorites (18O-5.5; D from-60 to-50) and plagioclases (18O from +9 to +10) reveal that the source of the fluid was certainly seawater. The 18O variations within the sills are strongly correlated with the rate of progress of the main metamorphic reaction:clinopyroxene+plagioclase+ilmenite chlorite+albite+epidote+quartz+sphene that produced major element mobility at the scale of the volcanosedimentary sequence. Calculation of elemental fluxes by mass balance combined with oxygen isotopic compositions of basalts shows that the highest water-rock ratios (1) were at sill-sediment boundaries and within pillow lavas at the top of the pile. The volcanosedimentary sequence of Erquy was a net sink for Na and a source for Ca. No Mg uptake could be detected whereas the hydrothermal alteration of the sediments released Fe, Si, and K trapped by the volcanic rocks. The 18O value of the fluid reacting with sills appears to have shifted no more than +4 after percolation at low temperature through immature sediments (18O12). The Erquy volcano-sedimentary sequence represents a marine hydrothermal system dominated by low-temperature exchange which allowed a general 18O-enrichment of the volcanic rocks and a 18O-depletion of sediments.  相似文献   

13.
The 620 M.y.-old in Hihaou (In Zize) magmatic complex located at the north-western boundary of the Archaean In Ouzzal block (western Ahaggar), is composed of massive alkaline rhyo-ignimbrites and rhyolitic domes, which are intruded by a granophyric and granitic body. The whole is preserved in a cauldron structure. Extrusive rocks are strongly 18O-depleted, with -values as low as –1.5/SMOW, while granophyres are less depleted (minimum -18O value=+2.0/SMOW. The granite has values around + 6/SMOW. D/H compositions are rather low, with D–90 to –110/SMOW. Isotopic zoning of quartz phenocrysts, 18O/16O fractionation among coexisting phases, and heterogeneity of the whole-rock -18O values, suggest that the volcanic rocks have interacted with meteoric water after the eruption. Several mechanisms of isotopic alteration are discussed. The hydrothermal alteration does not seem to have been controlled by the granitic intrusion, but rather seems to have followed the deposition of thick pyroclastic deposits on permeable arkosic sandstones and fluvio-glacial conglomerates. Pervasive circulation of water through the cooling volcanic deposits could have produced the observed 18O depletion.  相似文献   

14.
The isotopic composition of oxygen and carbon was studied in accessory carbonates and quartz separated from salts in Upper Devonian halogenous formations of the Pripyat Trough (Belorus). It is established that isotopic characteristics vary in a wide range. Values of 18O vary in the following range (SMOW): from 18.2 to 29.2 in calcites, from 15.7 to 32.5 in dolomites, and from 17.4 to 27.2 in quartz. Values of 13C range from –13.4 to 1.4 in calcites and from –11.1 to 1.7 in dolomites (PDB). Results obtained indicate highly variable isotope-geochemical conditions of sedimentation and early diagenesis during the formation of evaporitic sediments. Accessory minerals were repeatedly formed in a wide temperature range and probably at various stages of the lithogenesis.  相似文献   

15.
We have studied the oxygen isotopic composition of rocks from a 100 km transect through the central Superior province of Ontario, representing progressively the shallower terrains of the Kapuskasing structural zone (KSZ), the Wawa gneiss terrane (WGT), and the Michipicoten greenstone belt (MGB). These rocks range in age from 2.76 to 2.60 Ga, and correspond to a section through approximately 20 km of crustal thickness. Equivalent lithologic types have similar range of 18O values at each crustal level: tonalitic to granodioritic rocks: 6.4 to 9.5; dioritic and anorthositic rocks: 5.5 to 7.6; mafic gneisses: group 1 (majority): 5.7 to 7.1; group 2: 8.1 to 9.5. 18O values exhibit a remarkable correlation with SiO2 values, similar to that observed in unaltered plutonic rocks of equivalent composition. Paragneisses have significantly higher 18O values: 9.3 to 12.2. Low-grade metavolcanic and metasedimentary rocks of the MGB are 18O-enriched compared to their high-grade equivalents in the KSZ and WGT: 7.4 to 13.3 for mafic to felsic metavolcanic rocks; 11.4 to 14.7 for clastic metasediments. Coexisting minerals exhibit 18O-fractionation consistent with equilibrium, but corresponding to uniform isotopic temperatures about 553 to 584°C across the entire transect, lower than the inferred metamorphic temperatures in the highest-grade (KSZ) terrane. The lack of distinctive isotopic differences between equivalent rock types in the KSZ, WGT and MGB suggests that there is no significant gradient in 18O with depth in the crust. The majority of mafic gneisses (group 1) appear to have been emplaced either as subaerial extrusives, intrusive sills, or, less likely, as submarine extrusives that were hydrothermally altered at high temperatures. The less abundant group 2 mafic rocks have the 18O values typical of greenstones that were altered at low temperature by seawater, and isotopically resemble low-grade rocks in the Michipicoten and Abitibi belts. In general, no major changes in whole-rock isotopic composition appear to have occurred during granulite facies metamorphism, implying limited flux of water or CO2. The continuous linear gradient in 18O versus SiO2 in the high-grade rocks cannot be due to differentiation of a mafic source magma. A model involving an association between mantle-derived mafic magma and 18O-enriched crustal materials is more consistent with the oxygen isotopic and the REE data.McMaster Isotopic, Nuclear and Geochemical Studies Group Publication 163; LITHOPROBE Publication 168.  相似文献   

16.
Summary The stable isotope geochemistry of native gold-bearing quartz veins contained within low-grade metasedimentary strata in the central Canadian Rocky Mountains, British Columbia is examined. The data augment previous geological and geochemical studies.Vein pyrite 34S values cluster between + 14.2 and + 16.3 (CDT). Coeval galenas exhibit 34S values between + 11.4 and 13.3. Pyrite-galena geothermometry reveals a mean temperature of mineralization of 300 ± 43°C. Comparison of 34S values for the vein pyrites, with values for pyrite porphyroblasts in country rocks suggests that vein sulfur was probably derived from the host rocks.18O(SMOW) values of host quartzites and pelites cluster between + 12.0 and + 13.5, and + 9.5 and + 10.5, respectively. Auriferous vein quartz exhibits 18O values between + 13.0 and + 15.0. Veins were likely deposited from fluids undergoing post-peak metamorphic cooling.Vein inclusion fluids exhibit values between –105 and –124 (SMOW). Combined O-H-isotope data are most compatible with a source fluid involving chemically- and isotopically-evolved meteoric waters.The critical role of H-isotope data in the evaluation of source fluids for such mesothermal gold lodes is stressed. The paucity of H-isotope data pertaining to the study of lode gold deposits in similar low-grade metasedimentary domains suggests that the involvement of meteoric waters may at times be overlooked.
Der Ursprung metamorphogener Gold-Ganglagerstätten: Bedeutung stabiler Isotopendaten aus den zentralen Rocky Mountains, Kanada
Zusammenfassung Die vorliegende Arbeit befaßt sich mit der Untersuchung der Geochemie stabiler Isotope goldführender Quarzgänge in schwach metamorphen Sedimenten der zentralen Rocky Mountains in Britisch Kolumbien, Kanada. Die Resultate ergänzen früher publizierte geologische und geochemische Daten.Die 34S-Werte von Gang-Pyrit liegen zwischen + 14.2 und + 16.3 (CDT); gleichzeitig gebildeter Bleiglanz hat 34S-Werte von + 11.4 bis + 13.3. Die Isotopengeothermo metrie des Pyrits und Bleiglanzes ergibt eine mittlere Mineralisationstemperatur von 300°C + 43° für diese beiden Minerale. Vergleiche der 8345-Werte des Gang-Pyrits mit denen von Pyrit-Porphyroblasten des Nebengesteins lassen für die Gang-Pyrite eine Herkunft des Schwefels aus dem Nebengestein als wahrscheinlich erscheinen.Die 18O-Werte von Quarziten und Peliten, die als Nebengesteine auftreten, streuen von + 12.0 bis + 13.5 (SMOW), beziehungweise von +9.5 bis + 10.5 Quarz goldführender Gänge hat 18O-Werte, die zwischen + 13.0 und + 15.0 (SMOW) liegen. Er wurde als Gangfüllung wahrscheinlich bei sinkenden Temperaturen aus post metamorphen wäßrigen Lösungen abgesetzt.Flüssigkeitseinschlüsse von Gangmineralien zeigen D-Werte von -105 bis -124 (SMOW). Die H-O-Isotope sind deshalb ein Hinweis dafür, daß als mineralisierende Lösungen isotopisch veränderte meteorische Wässer in Betracht zu ziehen sind. Bei der Deutung der Herkunft der mineralisierenden wäßrigen Lösungen von mesothermalen Goldgängen muß die Kenntnis der H-Isotope als kritisch betrachtet werden. Die Seltenheit mit der H-Isotopendaten dieses Lagerstättentyps in der Literatur diskutiert werden, dürfte ein wesentlicher Grund dafür sein, daß die Rolle meteorischer Wässer bei der Genese mesothermaler, in Metasedimenten liegender Goldgänge, vielfach übersehen wurde.


With 4 Figures  相似文献   

17.
Zusmmenfassung Die Ergebnisse der Schwefelisotopenanalysen von sechs Sulfid- und vier Sulfatmineralproben von Bleiberg/Kreuth (Österreich) variieren von –6,9 bis –25,9 34S in den Sulfiden und von +14,8 bis +18,9 34S in den Sulfaten. Die große Variationsbreite der Schwefelisotopen und die Bevorzugung des leichten Schwefels deutet vermutlich auf bakterielle Prozesse der Sulfidfällung. Die Sulfatschwefel fallen in den Bereich der Schwefelisotopenzusammensetzung des mesozoischen (postskytischen) Meerwassers.
Determination of the sulfur isotopic composition in some sulfide and sulfate minerals of the lead zinc deposit, Bleiberg/Kreuth, Carinthia
Summary Results of sulfur isotope analyses on 6 sulfides and 4 sulfates from Bleiberg/Kreuth (Austria) range from –6.9 to –25.9 34S (in sulfides) and from +14.8 to +18.9 34S (in sulfates). A large range of sulfide sulfur isotope fractionation with appreciable light sulfur probably indicates a bacterial sulfur source in sulfide precipiation. The sulfate sulfur plots in the range of Mesozoic (post-Skytian) seawater sulfur isotopic composition.
  相似文献   

18.
The Myall Creek copper prospect is in unmetamorphosed carbonaceous dolosiltstone and sandstone at the base of the late Proterozoic (Adelaidean) Tapley Hill Formation. It contains disseminated, fine-grained chalcopyrite, zincian tennanite, bornite, chalcocite, pyrite, sphalerite and galena, and irregular to straight chalcopyrite-rich veinlets. Some ore minerals rim and/or partially replace pyrite or clastic grains. There is no evidence of hydrothermal activity. The 34SCDT values of pyrite and the other sulfides fall in the wide range –3.6 to +44.2. Dolomite in both mineralised and unmineralised samples has 13CPDB values concentrated around –3, and 18OSMOW values around +25. It is concluded that the mineralising fluids were near-neutral brines which leached metals from the basement and early Adelaidean rocks. They entered the Tapley Hill sediments at moderately low temperatures via permeable strata and faults. The metals were precipitated by biogenic H2S, and also fixed by reaction with iron sulfides and, possibly, organic matter. Continuing ascent of brines into the mineralised strata caused breakdown of detrital feldspars and Fe-Ti oxides, and some solution-remobilisation of early-formed sulfides.  相似文献   

19.
The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica±cordierite±Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293–289 Ma). SiO2 content in the granitic rocks ranges from 57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite±amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica±Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite±hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to 300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40–4.5), Th/Sm (0.1–3.6), Th/Ta (0–70), Ba/Nb (1–150), and Ba/Ta (50–2100), as well as low values of Nb/U (2–28) and La/Th (1–10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock 18O ranges from +8.2 to +11.7; the mafic cumulate enclaves have the lowest 18O values and the two-mica granites have the highest values. 18O values for biotite±honblende tonalitic and granodioritic rocks (9.1 to 10.8) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb 18.17–18.45, 207Pb/204Pb 15.58–15.77, 208Pb/204Pb 38.20–38.76) also indicates the predominance of a crustal source. Although the granitic groups cannot be uniquely distinguished on the basis of their Pb isotope compositions most of the post-tectonic tonalites to granodiorites as well as two-mica granites are somewhat less radiogenic than the syn-tetonic tonalites and granodiorites. Only a few of the mafic enclaves overlap the Pb isotope field of the granitic rocks and are consistent with a cogenetic origin. The Sila batholith was generated by mixing of material derived from at least two sources, mantle-derived and crustal, during the closing stages of plate collision and post-collision. The batholith ultimately owes its origin to the evolution of earlier, more mafic parental magmas, and to complex intractions of the fractionating mafic magmas with the crust. Hybrid rocks produced by mixing evolved primarily by crystal fractionation although a simple fractionation model cannot link all the granitic rocks, or explain the entire spectrum of compositions within each group of granites. Petrographic and geochemical features characterizing the Sila batholith have direct counterparts in all other granitic massifs in the Calabrian-Peloritan Arc. This implies that magmatic events in the Calabrian-Peloritan Arc produced a similar spectrum of granitic compositions and resulted in a distinctive type of granite magmatism consisting of coeval, mixed, strongly peraluminous and metaluminous granitic magmas.  相似文献   

20.
Isotopic compositions were determined for quartz, sericite and bulk rock samples surrounding the Uwamuki no. 4 Kuroko ore body, Kosaka, Japan. 18O values of quartz from Siliceous Ore (S.O.), main body of Black Ore B.O.) and the upper layer of B.O. are fairly uniform, +8.7 to +10.5. Formation temperatures calculated from fractionation of 18O between sericite and quartz from B.O. and upper S.O. are 250° to 300° C. The ore-forming fluids had 18O values of +1 and D values of –10, from isotope compositions of quartz and sericite.Tertiary volcanic rocks surrounding the ore deposits at Kosaka have uniform 18O values, +8.1±1.0 (n=50), although their bulk chemical compositions are widely varied because of different degrees of alteration. White Rhyolite, which is an intensely altered rhyolite occurring in close association with the Kuroko ore bodies, has also uniform 18O values, +7.9±0.9 (n=19). Temperatures of alteration are estimated to be around 300° C from the oxygen isotope fractionation between quartz and sericite. Paleozoic basement rocks phyllite and chert, have high 18O values, +18 and +19. The Sasahata formation of unknown age, which lies between Tertiary and Paleozoic formations, has highly variable 18O, +8 to +16 (n=4). High 18O values of the basement rocks and the sharp difference in 18O at their boundary suggest that the hydrothermal system causing Kuroko mineralization was mainly confined within permeable Tertiary rocks. D values of altered Tertiary volcanic rocks are highly variable ranging from –34 to –64% (n=12). The variation of D does not correlate with change of chemical composition, 18O values, nor distance from the ore deposits. The relatively high D values of the altered rocks indicate that the major constituent of the hydrothermal fluid was sea water. However, another fluid having lower D must have also participated. The fluid could be evolved sea water modified by interaction with rocks and the admixture of magmatic fluid. The variation in D may suggest that sea water mixed dispersively with the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号