首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the major biogeochemical processes in Hg cycling at the sediment–water interface was investigated in the Grado Lagoon (Northern Adriatic Sea). This wetland system has been extensively contaminated from the Idrija Hg Mine (Slovenia) through the Isonzo River suspended load carried by tidal fluxes. Three approaches were used to study the sediment–water exchange of total Hg (THg), methylmercury (MeHg), reactive Hg (RHg) and dissolved gaseous Hg (DGHg): (1) estimation of diffusive fluxes from porewater and overlying water concentrations, (2) measurements of benthic fluxes using a deployed light benthic chamber in situ and (3) measurements of benthic fluxes during oxic–anoxic transition with a laboratory incubation experiment. The THg solid phase, ranging between 9.5 and 14.4 μg g−1, showed slight variability with depth and time. Conversely, MeHg contents were highest (up to 21.9 ng g−1) at the surface; they tended to decrease to nearly zero concentration with depth, thus suggesting that MeHg production and accumulation occur predominantly just below the sediment–water interface. Porewater MeHg concentrations (0.9–7.9 ng L−1, 0.15–15% of THg) varied seasonally; higher contents were observed in the warmer period. The MeHg diffusive fluxes (up to 17 ng m−2 day−1) were similar to those in the nearby Gulf of Trieste [Covelli, S., Horvat, M., Faganeli, J., Brambati, A., 1999. Porewater distribution and benthic flux of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar. Coast. Shelf Sci. 48, 415–428], although the lagoon sediments contained four-fold higher THg concentrations. Conversely, the THg diffusive fluxes in the lagoon (up to 110 ng m−2 day−1) were one- to two-fold higher than those previously estimated for the Gulf of Trieste. The diurnal MeHg benthic fluxes were highest in summer at both sites (41,000 and 33,000 ng m−2 day−1 at the fishfarm and in the open lagoon, respectively), thus indicating the influence of temperature on microbial processes. The diurnal variations of dissolved THg and especially MeHg were positively correlated with O2 and inversely with DIC, suggesting an important influence of benthic photosynthetic activities on lagoon benthic Hg cycling, possibly through the production of organic matter promptly available for methylation. The results from the dark chamber incubated in the laboratory showed that the regeneration of dissolved THg was slightly affected by the oxic–anoxic transition. Conversely, the benthic flux of MeHg was up to 15-fold higher in sediments overlain by O2 depleted waters. In the anoxic phase, the MeHg fluxes proceeded in parallel with Fe fluxes and the methylated form reached approximately 100% of dissolved THg. The MeHg is mostly released into overlying water (mean recycling efficiency of 89%) until the occurrence of sulphide inhibition, due to scavenging of the available Hg substrate for methylation. The results suggest that sediments in the Grado Lagoon, especially during anoxic events, should be considered as a primary source of MeHg for the water column.  相似文献   

2.
The first advisory to limit consumption of Florida Bay fish due to mercury was issued in 1995. Studies done by others in the late 1990s found elevated water column concentrations of both total Hg (THg) and methylmercury (MeHg) in creeks discharging from the Everglades, which had its own recognized mercury problem. To investigate the significance of allochthonous MeHg discharging from the upstream freshwater Everglades, we collected surface water and sediment along two transects from 2000 to 2002. Concentrations of THg and MeHg, ranging from 0.36 ng THg/L to 5.98 ng THg/L and from <0.02 ng MeHg/L to 1.79 ng MeHg/L, were elevated in the mangrove transition zone when compared both to upstream canals and the open waters of Florida Bay. Sediment concentrations ranged from 5.8 ng THg/g to 145.6 ng THg/g and from 0.05 ng MeHg/g to 5.4 ng MeHg/g, with MeHg as a percentage of THg occasionally elevated in the open bay. Methylation assays indicated that sediments from Florida Bay have the potential to methylate Hg. Assessment of mass loading suggests that canals delivering stormwater from the northern Everglades are not as large a source as direct atmospheric deposition and in situ methylation, especially within the mangrove transition zone.  相似文献   

3.
The River Nura in Central Kazakhstan has been heavily polluted by Hg originating from an acetaldehyde plant. A number of studies were undertaken to investigate the transport, fate and bioavailability of Hg in this river system. The sediments within a 20 km section of the river downstream of the effluent outfall canal are highly polluted and are acting as a strong source of surface water contamination. Mercury transport in the river is dominated by the remobilization of contaminated bed sediments and river bank erosion during the annual spring flood. Peak Hg concentrations in unfiltered surface water samples during a larger than usual flood event in 2004 were in the order of 1600–4300 ng L−1. The majority of the particulate-bound Hg appears to be sedimented in the shallow Intumak reservoir 75 km downstream of the source of the pollution, leading to a drop in aqueous Hg concentrations by an order of magnitude. Nevertheless, background concentrations of Hg in surface water are not reached until at least 200 km downstream, and during the flood period Hg is also detected in the terminal wetlands of the river.Mercury concentrations in sediment cores taken from the river bed in the most contaminated section of the Nura ranged from 9.95 to 306 mg kg−1. Methylmercury (MeHg) levels in shallow sediment cores were highest in surface sediments and ranged between 4.9 and 39 μg kg−1, but were generally less than 0.1% of total Hg (THg). A significant inverse relationship was found between THg concentrations and the percentage of MeHg formed in the sediments, irrespective of the sampling depth. The observed relationship was confirmed by comparison with results from a different river system, indicating that it may be true also for other highly contaminated aquatic systems. It is hypothesized that at high THg levels in severely contaminated sediments, the accumulation of MeHg may be limited by increasingly efficient demethylation processes, and that this underlying trend in sediments is the reason why MeHg levels in surface water are often found to be higher at less contaminated sites compared to upstream sites.Mercury concentrations in biota in the most contaminated section of the river were 15–20 times higher than background levels. Fish were found to be impacted for more than 125 km downstream from the source, indicating significant transport of dissolved MeHg to downstream areas and/or in-situ MeHg production in less contaminated downstream reaches. There were also indications that impoundments may increase the bioavailability of Hg.  相似文献   

4.
The aim of this study was to evaluate Hg distribution in mangrove plants and changes of Hg content during leaf aging; the contribution of litterfall to Hg enrichment in mangrove ecosystems is also discussed. Contents of total Hg (THg) and methylmercury (MeHg) in mangrove plants and sediments were determined. Contents of THg and MeHg in the sediments were 225 ± 157 ng/g and 0.800 ± 0.600 ng/g. Concentrations of THg and MeHg in the mangrove plants were 1760 ± 1885 ng/g and 0.721 ± 0.470 ng/g (dry weight), respectively, which were much higher than those in terrestrial plants. Enrichment of THg in mangrove plants was different, following the order Rhizophra apiculata > Rhizophora stylosa > Kandelia candel > Aegiceras corniculatum Avicennia marina; while MeHg contents in mangrove plants decreased in the order of R. stylosa > K. candel > A. corniculatum > R. apiculata > A. marina. There were obvious interspecies differences, regional differences, individual differences and tissue differences between THg and MeHg contents of mangrove plants, all of which were closely related to the environmental and the physiological characteristics of mangrove plants. In juvenile leaves, mature leaves and leaf litter, THg contents ranged 55.3-1760 ng/g, 204-1800 ng/g, and 385-2130 ng/g (dry weight), respectively; MeHg contents ranged 0.17-2.39 ng/g, 0.01-1.28 ng/g, and 0.13-1.47 ng/g (dry weight), respectively. Except for A. corniculatum and Bruguier gymnorrhiza, THg content of mature leaves was always higher than that in juvenile leaves, but MeHg showed a contrasting trend. THg content of litter leaves was between that of juvenile leaves and mature leaves, while MeHg content was generally lower than that of juvenile leaves and mature leaves. In the mangrove ecosystem, Hg enrichment contributed by the litterfall decreased in the order of K. candel > A. corniculatum > A. marina.  相似文献   

5.
San Pablo Bay is an estuary, within northern San Francisco Bay, containing elevated sediment mercury (Hg) levels because of historic loading of hydraulic mining debris during the California gold-rush of the late 1800s. A preliminary investigation of benthic microbial Hg cycling was conducted in surface sediment (0-4 cm) collected from one salt-marsh and three open-water sites. A deeper profile (0-26 cm) was evaluated at one of the open-water locations. Radiolabeled model Hg-compounds were used to measure rates of both methylmercury (MeHg) production and degradation by bacteria. While all sites and depths had similar total-Hg concentrations (0.3-0.6 ppm), and geochemical signatures of mining debris (as )Nd, range: -3.08 to -4.37), in-situ MeHg was highest in the marsh (5.4Dž.5 ppb) and А.7 ppb in all open-water sites. Microbial MeHg production (potential rate) in 0-4 surface sediments was also highest in the marsh (3.1 ng g-1 wet sediment day-1) and below detection (<0.06 ng g-1 wet sediment day-1) in open-water locations. The marsh exhibited a methylation/demethylation (M/D) ratio more than 252 that of all open-water locations. Only below the surface 0-4-cm horizon was significant MeHg production potential evident in the open-water sediment profile (0.2-1.1 ng g-1 wet sediment day-1). In-situ Hg methylation rates, calculated from radiotracer rate constants, and in-situ inorganic Hg(II) concentrations compared well with potential rates. However, similarly calculated in-situ rates of MeHg degradation were much lower than potential rates. These preliminary data indicate that wetlands surrounding San Pablo Bay represent important zones of MeHg production, more so than similarly Hg-contaminated adjacent open-water areas. This has significant implications for this and other Hg-impacted systems, where wetland expansion is currently planned.  相似文献   

6.
To understand the geochemical cycle of Hg in hypereutrophic freshwater lake, two sampling campaigns were conducted in Lake Taihu in China during May and September of 2009. The concentrations of unfiltered total Hg (unfTHg) were in the range of 6.8–83 ng L−1 (28 ± 18 ng L−1) in the lake water and total Hg in the sediment was 12–470 ng g−1, both of which are higher than in other background lakes. The concentration of unfTHg in ∼11% of the lake water samples exceeded the second class of the Chinese environmental standards for surface water of 50 ng L−1 (GB 3838-2002), indicating that a high ecological risk is posed by the Hg in Lake Taihu. However, the concentrations of unfiltered total MeHg (unfMeHg) were relatively low in the lake water (0.14 ± 0.05 ng L−1, excluding two samples with 0.81 and 1.0 ng L−1). Lake sediment MeHg varied from 0.2–0.96 ng g−1, with generally low ratios of MeHg/THg of <1%. The low concentrations of TMeHg in the lake water may have resulted from a strong uptake by the high primary productivity and the demethylation of MeHg in oxic conditions. In addition, contrary to the results of previous research conducted in deep-water lakes and reservoirs, the low concentrations of MeHg and low ratio of MeHg/THg in the lake sediment indicates that the net methylation of Hg was not accelerated by the elevated organic matter load created by the eutrophication of Lake Taihu. The results also showed that sediments were a source of THg and MeHg in the water. Higher diffusion fluxes of THg and MeHg may be partly responsible for the higher concentrations of THg in the lake water in May, 2009.  相似文献   

7.
Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4 cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.  相似文献   

8.
The concentrations of total mercury and methylmercury in sediments were determined at the dam of the Wujiangdu Reservoir in different seasons. Total mercury (HgT) levels in the whole sediment profile were 254.2±47.0 ng/g in winter, 254.2±31.6 ng/g in spring, and 256.7±60.8 ng/g in summer, without significant variations in different seasons or at different depths. In contrast, the methylmercury (MeHg) compounds were most abundant at the sediment-water interface and decreased progressively with depth. MeHg contents of the sediments during different seasons are highly dependent on microbial activity, and seem to be higher when Hg (II)-methylating microorganisms are active. Thus, MeHg levels tend to rise in the loci where nutrient supplies and biological productivity are favorable. The percentage of HgT that is present as MeHg in the sediments increased gradually from December 2003 to April 2004 and to July 2004.  相似文献   

9.
Porewater samples were obtained on five occasions during spring, summer and fall by in situ dialysis from three sites of a large freshwater wetland situated along the St. Lawrence River. These samples were analysed for total dissolved mercury ([Hg]T) and methylmercury ([MeHg]) concentrations and for complementary variables including dissolved sulfate, sulfide and elemental sulfur concentrations. Sediment cores were obtained on three occasions from one of these sites for the determination of total mercury ({Hg}T) and methylmercury ({MeHg}) concentration as well as mercury methyltransferase (HgMT) activity profiles. {MeHg} and HgMT activity varied with time and sediment depth. The porewater [Hg]T and [MeHg] depth profiles varied with time and among sites. Modeling the porewater [MeHg] profiles with a one-dimensional reaction-transport equation allowed identification of the sediment depths where MeHg is produced or consumed, as well as an estimate of the net in situ MeHg production rates in the sediments. The model-predicted depths of MeHg production, as well as the sulfate concentration and the HgMT activity depth distributions are all consistent with the involvement of sulfate reducing bacteria in the production of MeHg.  相似文献   

10.
Metal concentrations were examined in sediments from 497 sites within the estuaries of the Gulf of Mexico by the United States Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Data were normalized for extant concentrations of aluminum to isolate natural factors from anthropogenic ones. The normalization was based on the hypothesis that metal concentrations vary consistently with the concentration of aluminum, unless metals are of anthropogenic origin. Strong linear correlations (>75% variation explained) were observed between Al and Cr, Cu, Pb, Ni, and Zn. Moderate correlations (50–75% variation explained) were observed between Al and As or Ag. Weak but significant correlations (30–40% variation explained) were observed between Al and Hg or Cd. Based on these results, the spatial extent of contamination was examined. About 39% of sites with contamination by at least one metal occurred near population centers, industrial discharge sites, or military bases. The remainder of the observed contamination represented a dispersed pattern, including the lower Mississippi River (7%) and numerous agricultural watersheds (54%), suggesting that the contamination might be from nonpoint sources.  相似文献   

11.
12.
《Applied Geochemistry》2006,21(11):1924-1939
The Idrija Mine, the second largest Hg mine in the world, ceased operation in 1995, but still delivers large quantities of Hg downstream including into the northern Adriatic Sea, 100 km away. Transformation of Hg species in sediment in sites over 60 km from the mine, including marine sites in the Adriatic Sea, was measured to determine the ability of the system to transform and mobilize Hg and to produce methylmercury (MeHg). Cores from a freshwater impoundment, a brackish estuarine site, and three marine sites in the Gulf of Trieste were sectioned anaerobically, and Hg methylation and MeHg demethylation activities determined using radio-techniques (203Hg for methylation and 14C-MeHg for demethylation). Total and dissolved Hg and MeHg were determined as were other geochemical parameters. In addition, rates of SO4 reduction were determined in marine sediment using a 35S technique. Mercury was readily methylated and demethylated at all sites. Marine sediment was investigated in winter and summer with rates of Hg transformation and SO4 reduction corresponding only in winter. Methylation of Hg in summer displayed subsurface peaks that may have been influenced by bioturbation. Total Hg and MeHg were most abundant in the freshwater, estuarine, and near-shore marine sites, but dissolved pore water Hg and MeHg were highest in the estuarine region where S cycling appeared ideal for the mobilization of Hg. The impoundment sediment also seemed to be a ‘hotspot’ of Hg transformations. MeHg demethylation occurred via the oxidative demethylation pathway (CO2 produced from MeHg), except in surficial sediment offshore in the Gulf during winter, where sediment was more oxidizing and significant amounts of CH4 were liberated during MeHg degradation via reductive demethylation. The CH4 formation was likely due to an increased influence from the expression of MeHg degradative enzymes encoded by the mer detoxification bacterial genetic system. The freshwater site also liberated CH4 from MeHg, but it appeared to be due to oxidative demethylation by methanogenic bacteria.  相似文献   

13.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

14.
15.
Based on the analysis of the enrichment characteristics of Hg and MeHg in bird feathers from Caohai National Nature Reserve in Guizhou, the risks of Hg pollution to the birds from Caohai wetland have been evaluated. The total Hg content of bird feathers ranges from 40 to 5058 ng/g with an average of 924 ng/g. The content of MeHg is significantly correlated with total Hg (r = 0.68, p < 0.01), and the content are among 0.75 and 113 ng/g. The total Hg content in the birds feathers is significantly dependent on their feeding habits, which is mainly in accordance with the following rule: carnivorous birds > omnivorous birds that are mainly carnivorous > omnivorous birds that are mainly herbivorous. There are also differences in the Hg enrichment ability in the different parts of bird feathers, and the total Hg and MeHg content in the wing feathers are significantly higher than that in the other parts of feathers. The bioaccumulation coefficients of aqueous Hg and MeHg by bird feathers are 0.9 × 104–112.13 × 104 (mean value is 20.47 × 104) and 0.47 × 104–70.4 × 104 (mean value is 9.52 × 104), respectively. Although the whole Hg level in Caohai bird feathers is not too high, the Hg content in some carnivorous birds exceeds over or approaches the abnormal threshold when birds are breeding (5 μg/g), which indicates that the birds in Caohai wetland are faced with some risks of ecological Hg pollution.  相似文献   

16.
《Applied Geochemistry》1987,2(3):297-304
Sediment extracts from 81 piston cores taken in water depths between 70 and 1200 m on the Gulf of Mexico continental shelf and slope were analyzed for dibenzothiophenes by capillary gas chromatography with flame photometric detection (FPD). The major aromatic sulfur compounds detected were dibenzothiophene; methyl, ethyl and propyl dibenzothiophenes; two unidentified sulfur compounds; and a series of benzothiophenes. In general, benzothiophenes (BTs) were detected at only trace levels though this may be due to loss during the analysis. Dibenzothiophenes (DBTs) concentrations ranged from <1 to 1725 ng/g, with an average of 139 ng/g. Vertical distributions generally showed significant increases in DBTs concentrations with depth. DBTs distributions in sediment extracts were similar to oils produced in the northern Gulf of Mexico. Variations from this composition may be due to microbial degradation in the near subsurface. The vertical and molecular distribution of DBTs suggests that the source of DBTs in the Gulf of Mexico sediments studied is upward migrating petroleum. Two unidentified compounds are speculated to be derivatives of DBTs, caused by indigenous microbial activity. This study suggests that DBTs may be useful for detecting seepage from deeper, more mature, source rocks and/or reservoired petroleum.  相似文献   

17.
. This paper deals with the extent of contamination in sediments of the southeast Gulf of Mexico. The concentration of elements (SiO2, Al2O3, Fe2O3, Na2O, MgO, CaO, and K2O) and heavy metals (Cu, Cd, Zn, Co, Pb, Ag, Cr, Ni, V, and Ba) were determined. The elemental composition of sediments is influenced by the Grijalva–Usumacinta–Terminos System at the east and the Tabasco lagoon system (El Carmen–La Machona) at the west coast of the study area. Concentrations of Ni, V, and Ba were anomalously high at some sites. Oil production activities in the vicinity of the sites may be responsible for the high values. Correlations of metal concentrations to elemental composition were performed. No significant relationships between metals and elements were found for most metals (p>0.05), suggesting that metals are not significantly associated with naturally occurring aluminosilicates, iron hydroxide, and calcium carbonate minerals of sediments. Other sources such as organic matter may be contributing to the total concentration of metals. The comparison of metal content in sediments of the southeast Gulf of Mexico with metals of the other areas of the Gulf of Mexico suggests that it is relatively contaminated with Cd, Pb, and Ni. The probable causes of contamination are briefly discussed.  相似文献   

18.
Previous studies in the Amazon Basin and the Upper Pantanal show widespread mercury contamination of fish and water as a result of gold mining, and subsequent volatilization of mercury during the recovery process. A study was initiated to assess whether atmospheric transport of mercury to the south has resulted in elevated levels in water and fish in the Lower Pantanal. Water samples were collected from streams and rivers from the Pantanal (Mato Grosso do Sul) down into the southernmost state of Brazil (Rio Grande do Sul) for total Hg concentration and oxygen isotopic analyses. Based on oxygen isotopes and conductivity, surface water samples can be considered as mixtures of three endmembers: groundwater, rain and “aged” surface water. Lowest concentrations (<2 ng/L) of total Hg were observed in the northernmost samples, especially those associated with the groundwater sources. Further south, Hg concentrations tended to increase, but higher concentrations (>2 ng/L) likely reflect direct input from more localized watershed sources. Fish collected from streams in the Pantanal had extremely low concentrations of total Hg regardless of their size or feeding habit, although one large carnivorous fish (>2 kg) had concentrations approaching 400 ng/g wet wt. All concentrations, however, were considerably lower than those observed in similar species from the region of the Amazon Basin affected by gold mining.  相似文献   

19.
The Delaware River Estuary (DRE) is a cornerstone of industrialization, shipping, and urban usage, and has a long history of human impact on pollution and recovery. Mercury (Hg) is a contaminant of concern in the DRE based upon concentrations in some fish samples that were found to exceed State and Federal fish tissue criteria. Methylation of Hg often follows a seasonal pattern as its production is biologically mediated. Surveys were conducted in November 2011, April 2012, and July 2012 to assess this effect. We sampled surface and bottom water at six sites spanning the estuarine turbidity maximum (ETM) in the main channel of the river, plus three sediment sites at shallow, subtidal locations. Our results indicate there is a clear seasonal increase in both water column and sediment methylmercury (MeHg) and %MeHg concentrations in the ETM during July. Water-column-filtered total mercury (HgT), suspended particle HgT, and MeHg concentrations were found to fluctuate little with location or season in the ETM. In contrast, sediment MeHg, water-column-filtered MeHg, and pore water HgT varied seasonally. Furthermore, pore water MeHg levels were elevated in concert with increased k meth rates in July. Estimated river input and sediment and atmospheric depositional MeHg flux were compared seasonally. River flux was more than an order of magnitude higher than sediment flux in April, coinciding with higher fluvial transport. However, during July, river flux decreases and sediment flux becomes a larger relative source. This trend has potential implications for fish and other biota residing in the DRE during summer.  相似文献   

20.
《Applied Geochemistry》2006,21(11):1855-1867
Methylmercury (MeHg) and total Hg (THg) concentrations in soil profiles were monitored in the Thur River basin (Alsace, France), where a chlor-alkali plant has been located in the city of Vieux-Thann since the 1930s. Three soil types were studied according to their characteristics and location in the catchment: industrial soil, grassland soil and alluvial soil. Contamination of MeHg and THg in soil was important in the vicinity of the plant, especially in industrial and alluvial soil. Concentrations of MeHg reached 27 ng g−1 and 29,000 ng g−1 for THg, exceeding the predictable no effect concentration. Significant ecotoxicological risk exists in this area and remedial actions on several soil types are suggested. In each type of soil, MeHg concentrations were highest in topsoil, which decreased with depth. Concentrations of MeHg were negatively correlated with soil organic matter and total S, particularly when MeHg concentrations exceeded 8 ng g−1. Under these conditions, MeHg concentrations in soil seemed to be influenced by THg, soil organic matter and total S concentrations. It was found that high MeHg/THg ratios (near 2%) in soil were mainly related to the combined soil environmental conditions such as low THg concentrations, low organic C/N ratios (<11) and relatively low pH (5–5.5). Nevertheless, even when the MeHg/THg ratio was low (∼0.04%), MeHg and THg concentrations were elevated, up to 13 ng g−1 and to 29,000 ng g−1, respectively. Thus, both THg and MeHg concentrations should be taken into account to assess potential environmental risks of Hg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号