首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shear-wave polarizations on a curved wavefront at an isotropic free surface   总被引:12,自引:0,他引:12  
Summary. We present polarization diagrams of the particle motions at the free surface of an isotropic half-space generated by incident shear waves from a local buried point source. The reflectivity technique is used to calculate synthetic seismograms from which the particle motions are plotted. The particle motions are examined over a range of epicentral distances in a uniform isotropic half-space for different source frequencies and polarization angles, and for different Poisson's ratios. The particle motions due to a curved wavefront possess different characteristics from those generated by plane wavefronts at corresponding incidence angles. A curved wavefront generates a local SP -phase: a P -headwave which propagates along the free surface, and arrives shortly before the direct S -wave. These two arrivals give rise to cruciform particle motions in the sagittal and horizontal planes, which could be misinterpreted as anisotropy-induced shear-wave splitting. An examination of the particle motion in the transverse plane, mutually orthogonal to the sagittal and horizontal planes, can be used to discriminate between isotropic and anisotropic interpretations. The amplitude of the SP -phase is enhanced when it propagates in a low-velocity surface layer overlying the source layer, and may then become the dominant phase on radial-component seismograms. The presence of even a single surface layer may introduce considerable complexity into the seismogram, and we examine the effects of layer thickness, velocity contrast, and source depth on the corresponding polarization diagrams. Reliable information on the source and propagation path characteristics of shear waves from a buried local point source can only be obtained from free-surface records if they are recorded within a very limited epicentral distance range.  相似文献   

2.
Geomagnetic field motions of Holocene secular variations are investigated using a separation method. The palaeomagnetic secular variations from Britain, North America and Australia have been subjected to maximum-entropy method analyses. Based on the results of spectral analyses, the secular variations are separated by band-pass filters into low-frequency components, generally including the period band 1800-3600 yr, and high-frequency components, generally including the period band 1000-1200 yr. There is an interval, from 4200 to 1700 yr BP, which shows clockwise rotational motions in the low-frequency components of all three sites. Westward drifting of geomagnetic fields may be globally dominant. Swinging or elliptical looping motions constrained to a certain direction were observed in the low-frequency components of the British data. The time duration for the persistence of the swinging motion constrained to a certain direction was 3500 years or so, which could be the lifetime of an oscillating stationary field. The duration of the transitional motion was 1000-1300 years, which may indicate the recurrence time of a stationary field.  相似文献   

3.
Transpressive plate motions during the opening of the Norwegian-Greenland Sea were in some manner responsible for the development of Spitsbergen's Tertiary fold-and-thrust belt. A flower model has been proposed for the large-scale structural architecture of Tertiary deformation (Lowell 1972). An alternate model of decoupling, where convergent and transcurrent motions were accommodated in totally or partially separated, subparallel belts is suggested.  相似文献   

4.
Summary. Present-day plate motions imply that about 240 km3 of oceanic lithosphere is created by sea-floor spreading and destroyed by subduction per year. A greater volume of asthenosphere will be dragged along by plate motions. Given the fluxes generated at plate boundaries, the horizontal direction and net rate of counterflow required to maintain mass balance is determined globally by a simple analytical model. Time-dependent calculations indicate that the motions are approximately valid in the hotspot reference frame over the past 5 Myr. Under most plates, the model return flow is opposite to the lithospheric motion in the hotspot frame. The counterflow dominates the resisting stresses to plate motion, so driving force models based on plate drag alone are not valid where the directions of plate motion and counterflow differ. The most marked departure of the two directions is under the North American plate. The model counterflow directions indicate that the sources of mantle hotspots are not located within the asthenosphere. Model flux balances demonstrate exchange of material between asthenospheric reservoirs located beneath different plates. Suggestions of southward asthenospheric motion under the North Atlantic, based on physical features around Iceland and strontium isotope geochemistry, are consistent with the direction of flow predicted by the model.  相似文献   

5.
Analytical solutions for the piezomagnetic potentials are derived for strike-slip, dip-slip and tensile-opening fault motions with arbitrary dip and strike angles, so as to be applicable in various types of earthquakes. These solutions are expressed as the composition of elementary functions which are identical to the magnetic potentials produced by magnetic dipoles, quadrupoles and octupoles distributed on the fault plane and other planes. Therefore, the geomagnetic field changes due to the piezomagnetic effect are expressed by the superposition of the fields produced by these equivalent sources.
Examples of calculated results show characteristic features for various types of fault motions as follows: (1) the pattern of the geomagnetic field changes becomes significantly different depending on the strike direction, although the maximum amplitude is almost the same for all directions; (2) the geomagnetic field change reaches a maximum at a dip angle of 90° for strike-slip and tensile-opening fault motions and at 45° for dip-slip fault motion.  相似文献   

6.
Summary Observations at Inuvik (70.4° dipole latitude) have shown that supersonic motions of auroral arcs that sweep across the zenith from south to north during poleward expansions of auroral substorms do not generate observable auroral infrasonic waves. This is in contrast to the fact that equator-ward supersonic motions of similar auroral arcs do produce large amplitude infrasonic bow waves. These results imply an asymmetry in the basic generation mechanism of infrasound within the auroral electrojet arcs.  相似文献   

7.
Continuous GPS (CGPS) coordinate time-series are known to experience repeating deformation signals with seasonal and other periods. It is unlikely that these signals represent perfect sinusoids with temporally constant amplitude. We develop an analysis method that accommodates temporal variations in the amplitudes of sinusoidal signals. We apply the method to simulated coordinate time-series to numerically explore the potential consequences of neglecting decadal variation in amplitude of annual motions on the residual-error spectra of CGPS measurements, as well as potential bias in estimates for secular site velocity. We find that secular velocity bias can be appreciable for shorter time-series, and that residual-error time-series of longer duration may contain significant power in a broad band centred on semi-annual frequency if temporal variation in the amplitude of annual motions is not accounted for in the model used to reduce the observations to residuals. It may be difficult to differentiate the bandpass filtered signature of mismodelled loading signals from power-law noise, using residual-error spectra for shorter time-series. We provide an example application to a ∼9-yr coordinate time-series for a CGPS station located in southern California at Carbon Creek Control Structure (CCCS), which is known to experience large amplitude seasonal motions associated with the Santa Ana aquifer system.  相似文献   

8.
9.
Postcollisional tectonic movements in orogens and their adjacent foreland basins related to intraplate stresses and the presence of a remnant slab are likely to induce significant deformations overprinting the existing patterns of nappe emplacement. In the Carpathian Bend Zone, Romania, vertical motions associated with very limited postorogenic intraplate shortening are of similar magnitude as those generally caused by large orogenic deformations. In the Latest Miocene–Pliocene, up to 6 km of postcollisional sediments of remarkably parallel stratification were deposited in a basin extending over a large part of the present‐day orogen. The Early Quaternary featured a dramatical change as the orogen was uplifted while subsidence continued in the basin, tilting the basin flank adjacent to the orogen to a vertical position. The remnant slab presently below the Bend zone in Vrancea is the prime mechanism to have driven the Pliocene subsidence. The Quaternary changes and the eastwards migration of the pattern of vertical motions can be explained by large‐scale folding, in response to the overall compressive regime that is recorded in the whole Pannonian‐Carpathian area.  相似文献   

10.
Summary. In this paper computer modelling is used to test simple approximations for simulating strong ground motions for moderate and large earthquakes in the Mexicali–Imperial Valley region. Initially, we represent an earthquake rupture process as a series of many independent small earthquakes distributed in a somewhat random manner in both space and time along the rupture surface. By summing real seismograms for small earthquakes (used as empirical Green's functions), strong ground motions at specific sites near a fault are calculated. Alternatively, theoretical Green's functions that include frequencies up to 20 Hz are used in essentially similar simulations. The model uses random numbers to emulate some of the non-deterministic irregularities associated with real earthquakes, due either to complexities in the rupture process itself and/or strong variations in the material properties of the medium. Simulations of the 1980 June 9 Victoria, Baja California earthquake ( M L= 6.1) approximately agree with the duration of shaking, the maximum ground acceleration, and the frequency content of strong ground motion records obtained at distances of up to 35 km for this moderate earthquake. In the initial stages of modelling we do not introduce any scaling of spectral shape with magnitude, in order to see at what stage the data require it. Surprisingly, such scaling is not critical in going from M = 4–5 events to the M = 6.1 Victoria earthquake. However, it is clearly required by the El Centro accelerogram for the Imperial Valley 1940 earthquake, which had a much higher moment ( Ms ∼ 7). We derive the spectral modification function for this event. The resulting model for this magnitude ∼ 7 earthquake is then used to predict the ground motions at short distances from the fault. Predicted peak horizontal accelerations for the M ∼ 7 event are about 25–50 per cent higher than those observed for the M = 6.1 Victoria event.  相似文献   

11.
Summary. Models of shallow, global mantle circulation due to the accretion and subduction of lithospheric plates are formulated as potential theory problems on a sphere. Subducting and accreting plate boundaries represent sources and sinks respectively for the sublithospheric flow. Solutions, which are obtained by finite difference approximations, give the instantaneous flow velocities within the asthenosphere compatible with plate boundaries and relative plate motions. Results are presented for present-day plate boundaries and relative plate motions for the case of a uniform viscosity asthenosphere and for that of a low viscosity zone at the base of the lithosphere. These results are discussed in terms of available geophysical data. Some of the implications of a shallow, mantle-wide circulation are also considered.  相似文献   

12.
城市是区域发展的核心,城市化是区域发展过程中的一种重要运动形式.近百年来,辽宁沿海地区逐渐完成带状空间格局演变,但由于各种原因,这一地区内部城市化进程不均衡,城市等级体系不完善,城市化滞后工业化,城市基础设施不健全.通过实际考察分析,从城市化响应视角探究辽宁沿海经济带的经济复兴和区域发展,提出中心城市化辐射带动、城市体系重构、区域空间结构优化、城市生态空间构建4种适合辽宁沿海经济带内城市化发展的响应机制.  相似文献   

13.
A fault plane solution using theoretical P seismograms   总被引:1,自引:0,他引:1  
We use the method of Hudson and Douglas, Hudson & Blarney to compute seismograms which simulate the codas of 10 short period P -wave seismograms from a shallow earthquake. The polarities and relative amplitudes of P and pP measured from seven of the observed seismograms are used to compute a fault plane solution with confidence limits, assuming that the source radiates as a double couple. This solution is in approximate agreement with that given for the same earthquake by Sykes & Sbar, who used only the onset polarities of short-period P waves. The small difference between the two solutions can be explained by interference between the true first motion of P and microseismic noise at two stations.
The results show that, for some shallow earthquakes, the relative amplitude method has the following advantages over the first motions method. First, a P/pP amplitude ratio (with appropriate confidence limits) can always be measured, even in seismograms which are so noisy that the first motion of P is uncertain. Second, the fault plane solutions obtained from relative amplitudes have known confidence limits. Finally, by using more information from each seismogram, the relative amplitude method requires considerably fewer seismograms than the first motions method.  相似文献   

14.
Continental drift and true polar wandering   总被引:1,自引:0,他引:1  
Summary . Evidence in the form of 75 yr of ILS data is accumulating which suggests that true polar wander may be currently taking place. It seems likely that true wander of some magnitude must always accompany plate motions, but the extrapolated ILS rate is an order of magnitude larger than the rate of true polar wander deduced from palaeomagnetic data over the past 55 Myr. The conflict between palaeomagnetic and latitude data provides the motivation for investigating one possible excitation of polar wander, the mass redistribution which accompanies continental drift.
The mass redistribution arises mainly because of the contrasting density structure of oceanic and continental regions. The change in the inertia tensor resulting from 106yr of plate motions is found to be negligibly small; even consideration of episodic plate movements, anelasticity, or a decoupled lithosphere cannot boost the effect to the ILS rate of polar wander. These conclusions are strengthened by the fact that any one of several absolute plate velocity models, based on extremely diverse assumptions, yields the same results.
In contrast, preliminary findings regarding the effect of Pleistocene deglaciation activities on the inertia tensor reveal that such non-isostatic phenomena may have a large influence on polar wander.  相似文献   

15.
Summary. The elegant geometrical rules of plate tectonics do not allow for a gradual shift in plate motion directions, or the gradual, as opposed to sudden, cessation of subduction. At the scale of the small plates in the NE Pacific, imperfections in boundary processes have a large effect on the net torque on the plates, and heavily influence the evolution of the geometry. In this area, the rotation of the spreading directions and the diminution of true subduction along the southern Canadian coast has not occurred by the sudden switching of plate motions from one stable condition to another. Instead, it appears as if the dominant factor for the evolution is the resistance of the ocean floor to formation of new, smoothly slipping transform faults. Compressive deformation of even young lithosphere is not only mechanically unlikely, but is not helpful to the particular configurations found in this area. Instead, a migrating shear zone and an episode of highly en echelon spreading along a new axis nearly perpendicular to the present Juan de Fuca ridge have resulted: the present Sovanco ridge was never a transform fault. Neither is the Nootka fault a shear zone, but the locus of stretching between plates whose motions are congruent at the Juan de Fuca ridge, but diverge toward the continental margin.  相似文献   

16.
Summary. New fault plane solutions, Landsat photographs, and seismic refraction records show that rapid extension is now taking place in the northern and eastern parts of the Aegean sea region. The southern part of the Aegean has also been deformed by normal faulting but is now relatively inactive. In northwestern Greece and Albania there is a band of thrusting near the western coasts adjacent to a band of normal faulting further east. The pre-Miocene geology of the islands in the Aegean closely resembles that of Greece and Turkey, yet seismic refraction shows that the crust is now only about 30 km thick beneath the southern part of the sea, compared with nearly 50 km beneath Greece and western Turkey. These observations suggest that the Aegean has been stretched by a factor of two since the Miocene. This stretching can account for the high heat flow. The sinking slab produced by subduction along the Hellenic Arc may maintain the motions, though the geometry and widespread nature of the normal faulting is not easily explained. The motions in northwestern Greece and Albania cannot be driven in the same way because no slab exists in the area. They may be maintained by blobs of cold mantle detaching from the lower half of the lithosphere, produced by a thermal instability when the lithosphere is thickened by thrusting. Hence generation and destruction of the lower part of the lithosphere may occur beneath deforming continental crust without the production of any oceanic crust.  相似文献   

17.
Summary. We describe a method which provides an estimate of the accuracy to which time-domain features of seismic signals can be measured in the presence of noise. Observed seismograms are simulated by adding random noise with the same frequency spectrum and signal-to-noise ratio to matching synthetic seismograms. The effect of noise on synthetic and observed P -wave first motions is used as an illustration. It is shown that the apparent reliability of such observations, as determined by visual estimation, is often illusory.  相似文献   

18.
A model of time-periodic mantle flow   总被引:1,自引:0,他引:1  
Summary. The instability of a layer consisting of a lighter viscous fluid on top of a heavier less viscous fluid is considered in the case when the heavy fluid is adiabatically stratified and the light fluid contains heat sources and possesses a lower heat conductivity. A perturbation in the thickness of the upper fluid layer causes horizontal temperature variations in the lower fluid. The motions induced by thermal buoyancy can interact with the distortion of the interface in such a way that the initial perturbation is reinforced in the form of an overstable oscillation. It is proposed that this mechanism is relevant to the problem of time-dependent flow in the Earth's mantle.  相似文献   

19.
Summary. The largest earthquake-induced acceleration yet recorded occurred at the United States Geological Survey's (USGS) Strong Motion Array Station 6 during the 1979 October 15, Imperial Valley, California earthquake. This large acceleration (1.74 g, vertical component) is anomalously strong considering the low magnitude of the event ( M = 6.4), and the fact that receivers in the immediate neighbourhood of Station 6 recorded much lower accelerations. Previous studies of the records by other investigators have suggested a number of explanations for the anomaly, several of which implicate the near-receiver geological structure.
We present a detailed time and frequency domain analysis of the acceleration records at Stations 6, 5, 7, 8 and Diff Array to suggest that the anomalous acceleration is the consequence of the focusing of the incoming body waves by the lens-like effect of the sedimentary wedge between Imperial Valley and Brawley faults. The analyses include a detailed comparison of observed particle motions between neighbouring stations. Narrow band-pass filtered particle motions at Station 6 reveal the interaction of multipath arrivals as well as the frequency-dependent interference between them. Three-dimensional ray tracing experiments confirm the fact that the faulted sedimentary wedge is capable of focusing P -waves near Station 6. The interpretation that best combines theoretical and observed results is that amplification was due to the formation of an elliptic umbilic caustic with focus near the surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号