首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
The effects of increased photosynthetic active radiation (PAR), UV radiation (UVR), and nutrient supply on photosynthetic activity, pigment content, C:N ratio and biomass yield were studied in tank cultivated Gracilaria conferta (Rhodophyta). Electron transport rate (ETR) and biliprotein content were higher under high nutrient supply (HNS), obtained from fishpond effluents, compared to low nutrient supply (LNS), in contrast to mycosporine-like amino acids (MAAs) dynamic. The high MAA content in LNS-algae could be explained by higher UVR penetration in the thallus and by the competition for the use of nutrients with other processes. Effective quantum yield decreased after short-term exposure to high irradiance whereas full recovery in shade was produced only under slightly heat shock. UVA radiation provoked an additional decrease in photosynthesis under high water temperature. UVB radiation reversed UVA’s negative effect mainly with HNS. Results support that nutrient-sufficiency help G. conferta to resist environmental changes as short-term temperature increase.  相似文献   

3.
李静  陈光杰  黄林培  孔令阳  索旗  王旭  朱云  张涛  王露 《湖泊科学》2023,35(6):2170-2184
区域增温和大气氮沉降作用已成为高山湖泊面临的重要环境胁迫,已有高山湖泊生物群落响应的长期模式研究主要集中于藻类而缺乏更高营养级生物(如浮游动物)的系统调查。本研究选择滇西北地区深水型的高山湖泊沃迪错开展沉积物调查,通过多指标分析(总氮、总磷、叶绿素a、氮稳定同位素等)并结合区域气候重建记录,识别近两百年来该湖泊及流域环境的变化历史,进一步利用枝角类群落指标(物种组成、生物量等)定量评价了湖泊生物群落的响应模式与驱动因子。结果表明,湖泊营养水平(如总氮浓度)和初级生产力(叶绿素a浓度等)在过去近两百年总体呈上升趋势。相关分析显示,大气氮沉降和流域外源输入是影响总氮上升的主要因素,同时区域增温和营养盐富集促进了湖泊初级生产力的不断上升。自1960s以来区域升温明显,湖泊营养水平和叶绿素a浓度呈现加速上升的趋势。钻孔中枝角类群落以浮游属种(Daphnia longispina等)为优势种,在1900AD以前D.longispina相对丰度较为稳定(40.83%±8.02%),之后出现下降趋势且在1948—1965年间明显下降,之后再次明显上升并成为主要优势种。排序分析显示,气温、叶绿素a和总...  相似文献   

4.
5.
6.
The abundance and the biomass of bacterial, phytoplanktonic, and ciliate communities were estimated at different depths during the spring planktonic development in an oligo-mesotrophic lake (the Pavin lake).The bacterial population, which consists mainly of free bacteria (94% of the total bacterial abundance), displays only low cell densities (0.6 to 7 × 105 cells · ml–1) and represents low biomass values (0.9 to 11.5 µgC·l–1) The bacteria represent from 0.9 to 23.8% (M = 9.7%) of the microplanktonic biomass (with the exclusion of heterotrophic nanoflagellates, i.e. bacteria + phytoplankton + ciliates, size range 0.2–160 µm). The abundance of the phytoplankton varies between 0.5 and 1.8 × 106 cells·l–1, and the biomass values between 12 and 118 µC·l–1. The phytoplankton population constitutes the largest part of the microplanktonic biomass (51.9 to 96.6%, M = 80.6%), and the diatomMelosira italica subsp.subarctica is the largely dominant species of this community. The population of ciliates, essentiallyOligotrichida andScuticociliatida, displays densities between 1.3 and 38.3 × 103 cells·l–1 (M = 6.7 × 103 cells·l–1), and biomass values vary from 0.10 to 16.30 µgC·l–1 (M = 6.01 µgC·l–1). The ciliates constitute thus from 0.1 to 26.4% (M = 9.8%) of the microplanktonic biomass. Whereas the oligotrichs are best represented in the euphotic zone, the small-sized scuticociliates dominate in the hypolimnion. Besides, species having symbionts and considered to be mixotrophic (Strobilidium gyrans, Strombidium viride, Stokesia vernalis) develop preferentially in the epilimnion and constitute more than 50% of the total ciliate biomass.  相似文献   

7.
The freshwater microalgal species, Gonyostomum semen, has increased in abundance and distribution in boreal lakes during the past few decades, concerning ecologists and water managers. Due to its rapid spread, G. semen has often been referred to as an invasive species, although it was first described in the 1800s. We hypothesized that G. semen is not an invasive species in Norwegian lakes, and that the increasing success is due to beneficial changes in environmental conditions for this species during the past century. We tested these hypotheses by performing a paleolimnological study of a Norwegian Lake, Skjeklesjøen, with known mass occurrence of G. semen. A specific G. semen pigment biomarker, heteroxanthin, was used to detect this species in layers of a sediment core with known age determinations. Environmental factors in both lake and catchment were further investigated and the relationships with the amounts of G. semen was tested. Our results suggested that G. semen was in fact not an invasive species in this lake the past decades. Several factors were identified as plausible drivers for G. semen in this boreal lake. Between 1874–2016, the increasing levels of G. semen in Lake Skjeklesjøen was most closely correlated with Carbon (C), lake color (measured as absorbance of sediment extracts), Nitrogen (N) and spring temperature. Our results suggest that the rapid increase in G. semen population in this boreal lake over the past 70 years was probably due to a combination of climate change and local anthropogenic activities in the catchment, causing increased browning and increased inputs of organic matter and nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号