首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地幔矿物与水流体之间元素分配系数的研究及意义   总被引:1,自引:0,他引:1  
流体是地球内部物质和能量迁移最为活跃的介质,它在造成地幔化学的富集和亏损,产生具有不同地球化学特征的幔源岩浆岩石,以及促进壳幔物质的再循环过程等诸多方面都起了重大作用,高温高压下实验模拟流体与地幔岩石和矿物之间痕量元素分配作用是揭示地幔流体的组成与性质,地幔中不同元素类型之间或内部的分异作用,地幔交代介质的类型与特征,岛孤玄武岩高场强元素亏损原因的一个重要的手段,并对近年来有关高温高压下流体与地幔矿物之间痕量元素分配作用的实验模拟研究进行了评述,分析了制约流体与地幔矿物之间痕量元素分配系数的因素,总结了这些研究的应用。  相似文献   

2.
香花岭花岗岩不同岩相的岩石化学、微量元素,元素对比值和包裹体温度,压力与成分等方面的研究表明:香花岭花岗岩为H2O-F-CO2-Cl流体类型,属超临界流体,在超临界流体作用下,岩浆体系内熔体的粘度,内压,组分活动性及含量,胡岩浆演化呈系列变化,导致岩浆体系内的成分强烈分异成层;Nb,Ta等成矿元素,随岩浆体系内超临界流体的聚集而富集,随体系内射气分异作用的发生而矿化,成矿作用发生在岩浆期。其成岩成  相似文献   

3.
变质流体研究新进展   总被引:7,自引:2,他引:7  
徐学纯 《地学前缘》1996,3(4):200-208
变质流体是变质过程的主要动力学因素之一。目前变质流体研究主要集中在下部地壳麻粒岩相变质流体,俯冲带高压-超高压变质流体和接触变质流体等方面。研究的主要问题是流体流动机制和元素迁移,流体-岩石相互作用和流体来源。下部地壳麻粒岩相变质流体以CO2为主,具有较低的aH2O。δ13C研究表明大约2/3CO2是深成的。富CO2流体流动是紫苏花岗岩形成和热扰动的原因之一,也是麻粒岩形成和大离子亲石元素亏损的主要因素。俯冲带是高压、超高压变质作用发生和流体活动最活跃的场所。流体富含H2O、CH4和CO2,可以诱导部分熔融反应和岛弧岩浆作用。高压变质条件下的矿物稳定性也与流体有关。同位素研究表明,在超高压变质期间没有化学上完全相同的流体大规模循环。流体-熔体系统模式能更有效地解释下插板片的元素再循环。接触变质流体研究主要集中在含有易于发生流体-岩石反应的不纯碳酸盐岩地区。硅灰石带中流体/岩石比率高达40∶1,表明接触变质岩石中有大量流体存在。接触变质过程流体成分有较大差异,主要取决于流体来源、原岩性质和侵入体特征。流体流动和循环模式受控于构造变形,岩浆作用和变质过程的动力学条件及流体成分。  相似文献   

4.
氧同位素研究对于示踪流体—岩石相互作用过程中流体的时间累积流量(或流体/岩石比)、流动方向和组成具有重要意义。基于质量平衡原理可以建立“封闭”体系和开放体系的氧同位素交换模型。“封闭”体系又可分为封闭、批式挥发和瑞利挥发体系。瑞利挥发较批式挥发造成岩石更大的^18O亏损,但在地质过程中两者差异并不显著。开放体系连续模型中氧同位素迁移的机制包括扩散称散和平流。由流体流动速率和扩散称散系数定义的Peclet数决定了上述两种机制在一定尺度上对氧同位素迁移的相对贡献。流体—岩石交换受表面动力学控制,当交换速率快于流体流动时,可认为流体和岩石达到了氧同位素分馆平衡,反之则没有达到平衡。由流体流动速率和流体—岩石反应速率常数定义的Damkoehler数决定了反应接近平衡的程度。如果采用多种矿物相监控,则矿物内部分馆可有效地区分这两种反应模型。对流体—岩石相互作用过程中氧同位素变化的地球化学动力学进行了系统评述,其原理和模型也可扩展到对其他元素的研究。  相似文献   

5.
香花岭花岗岩不同岩相的岩石化学、微量元素、元素对比值和包裹体温度、压力与成分等方面的研究表明:香花岭花岗岩为H2O-F-CO2-Cl流体类型,属超临界流体。在超临界流体作用下,岩浆体系内熔体的粘度、内压、组分活动性及含量,随岩浆演化呈系列变化,导致岩浆体系内的成分强烈分异成层;Nb、Ta等成矿元素,随岩浆体系内超临界流体的聚集而富集,随体系内射气分异作用的发生而矿化,成矿作用发生在岩浆期。其成岩成矿作用为一连续过程。在这一过程中,岩浆的结晶分异作用和交代、熔蚀作用并存,沉淀作用和溶解作用交替,实质上是岩浆体系的分异作用或自然组织作用过程  相似文献   

6.
火成岩岩石成因研究包括确定岩石性质、源岩的矿物成分和化学成分、源岩熔融过程和岩石形成的物理化学条件,以及同化混染作用、分异作用及流体对岩石的怍用等内容。对这些内容的研究以前多由实验岩石学来承担。近几年来,痕量元素地球化学,包括浠土元素地球化学的进展,使火成岩成因研究工作大大推进了一步。稀土元素定量模式是稀土元素地球  相似文献   

7.
流体-岩石相互作用的研究突破了静止的固体地球观。开放体系、不平衡和动力学的研究构成了以地球内部流体为目标的前缘领域。矿物-流体体系氧同位素交换反应动力学模型主要分为5种:封闭、“封闭”、单向流动开放体系、流体缓冲体系和岩石缓冲体系。18O/16O交换机制主要为扩散控制和表面控制,后者通常伴随着强烈的矿物蚀变反应,前者则缺乏之。花岗岩-流体体系主要包括浅成系统、深成和/或者长期活动系统以及均一化平衡系统。花岗岩-流体氧同位素交换反应大多属于开放体系不平衡类型。同变形期流体-岩石相互作用的本质在于变形与流体化学反应的藕合作用。流体循环与质量传输机制主要包括平流或渗透、扩散以及平流-扩散复合机制。  相似文献   

8.
变质流体作用的元素地球化学研究   总被引:3,自引:0,他引:3  
变质流体作用是变质岩-流体体系的重要地质作用过程,可以通过有效的地质地球化学方法揭示,综述了变质流体作用的地球化学研究进展,主要包括:流体包裹体,同位素和元素地球化学等方面,强调了元素地球化学研究对于示踪变质流体作用过程的重要性。  相似文献   

9.
东南沿海地区古近纪大陆岩石圈地幔特征及成因   总被引:3,自引:0,他引:3  
东南沿海地区新生代玄武岩中的橄榄岩包体来自岩石圈地幔 ,上地幔橄榄岩包体的岩石学及地球化学特征都记录了地幔演化的历史。普宁橄榄岩包体斜方辉石含量与太古宙克拉通地幔类似 ,但在矿物学、REE、痕量元素和Sr Nd同位素上又与太古宙岩石圈地幔不同。橄榄岩包体的岩相学、矿物学、REE、痕量元素特征都提供了含H2 O富Si流体交代橄榄岩的证据 ,这种流体可能主要是洋壳物质局部熔融而成。流体交代使橄榄岩富Si,同时富Sr、Pb和强不相容元素等大洋岩石圈物质。这表明普宁大陆岩石圈地幔既保留太古宙岩石圈地幔的特征 ,又具有大洋俯冲地幔的特征 ,它是古老岩石圈地幔向大洋岩石圈地幔转换的一部分 ,这种转换可能是大洋岩石圈与大陆岩石圈地幔相互作用的结果。  相似文献   

10.
介绍了近年来国外在研究压溶作用导致的变形岩石体积损失和变形过程中流体作用的主要成果。包括如下几方面:运用有限应变测量方法对压溶变形作用进行定量分析;不同变形域之间化学成分的分异,以及流体传质作用(masstransport)的规律;流体-岩石相互反应的显微构造、显微化学判据;运用稳定同位素体系研究流体、岩石反应的同位素平衡关系及变形变质过程中的水/岩比率。  相似文献   

11.
地壳流体-岩石氧同位素交换反应动力学研究现状   总被引:1,自引:0,他引:1  
矿物-流体体系氧同位素交换反应动力学模型主要分为5种:封闭、"封闭"、一般开放、流体缓冲体系以及岩石缓冲体系。交换机制主要为扩散控制和表面控制。层状辉长岩上部、下部岩系辉石往往表现出不同的交换速率和交换程度,流体的初始δ18O值也显示出较大的不均一性。花岗岩-流体氧同位素交换反应绝大多数为开放体系不平衡类型。中深成岩基与浅成岩体在有效反应时限、流体标准化渗透率方面不同。前寒武纪条带状硅质铁建造分为低级变质地带(Ⅰ组)和高级变质地带(Ⅱ组),前者多为典型的开放体系不平衡类型,石英反应程度低;后者则接近平衡,石英反应程度高。造山带低级变质地体流体-岩石18O交换主要是在岩石缓冲体系下进行的。流体循环与质量传输机制主要有:平流、扩散、扩散-平流复合机制。  相似文献   

12.
陈衍景 《地学前缘》1996,3(4):282-289
陆内碰撞和流体作用都是当前地球科学的前沿领域,但陆内碰撞机制流体作用以及有关在 作用的研究仍很薄弱,文章以陆内碰撞成岩成矿模式为基础,通过理论分析,建立了陆内碰撞体制流体作用的模式,即在陆内俯冲体制中,随板片俯冲深度的增加,依次产生改造流体,变质流体和岩浆流体,所产生的流体在空间上具有分带性,并造成岩石,元素,矿化蚀变的成带规律分布;陆内俯冲的早期挤压阶段的流体作用以及深部物质分泌的上升流体(改造  相似文献   

13.
与花岗岩有关的成矿流体与成矿金属研究   总被引:2,自引:0,他引:2  
虽然分异结晶和热重力扩散对花岗质岩浆结晶过程中成矿元素的相对富集有重要的影响,但在此过程中富水流体相的分离却显得更加重要,温度、压力、流体成分及水的绝对含量决定着亲花岗岩类元亲从熔浆中分离出来的量.流体中成矿元素主要以Cl ̄-、F ̄-、OH ̄-、HS ̄-等的络合物形式迁移,而其沉淀环境则介于岩石缓冲及流体缓冲条件之间。  相似文献   

14.
韧性剪切带内流体作用的研究   总被引:7,自引:3,他引:7  
韧性剪切带内的流体作用是一种复杂的构造物理化学过程和力学-化学的耦合过程。它不仅影响着岩石的变形机制,促进变形构造的发生和发展,而且影响着岩石的矿物组成及化学成分的变化。本文在综合评价现有研究成果的基础上认为,岩石的成分变异和体积变化是韧性前切带内流体作用研究的主要内容,韧性剪切带内构造-流体演化历史,构造物理化学、岩石应变模式及其特征的研究是今后韧性剪切带内流体作用研究的发展方向和前沿领域。  相似文献   

15.
用流固耦合方法研究油藏压裂后应力应变和孔渗特性变化   总被引:10,自引:1,他引:10  
油藏压裂后将引起地应力场发生变化,使岩石变形,导致孔隙度和渗透率变化,进而影响产量,为研究这一问题,作者建立了油藏压裂后流-固耦合渗流模型,考虑了以下因素:油藏岩石变形,地应力,孔隙度和渗透率变化,人工裂缝,流体渗流与岩石应变耦合,储藏渗流与裂缝渗流耦合,非达西效应等。较详细地给出了耦合方程及推导过程,控制方程包括的未知变量有压力,饱和度及位移,11个变量,和11个方程,用有限差分方法将流体渗流和岩石应变方程离散成主对角占优的七对角矩阵,可在修改已有三维二相渗流和三维固体力学程序的基础上,采用隐式迭代方法求解,示例分析表明,用此模型可以研究储层应力变变,孔隙度和渗透率随时间和空间变化规律,为开发方案制定,整体压裂设计,压后生产管理等方面提供定量分析技术。  相似文献   

16.
应用二组分成分变异曲线图判别岩浆作用的一套有效方法   总被引:3,自引:1,他引:3  
本文以瑞利结晶、批式熔融、分离熔融和混合作用四种主要的微量元素模型为基础,建立了对应于这些岩浆作用的一套以元素比值-比值(或元素)、共分母元素比值-比值、共分子元素比值-比值和元素-元素作变量的数学方程及相应的成分变异曲线图。在分析一套有成因联系的岩石的形成机理时,只要将岩石成分投点成有关的变异图,并与本文的成分变异曲线图对比,就能快速确定岩石的成分变异主要受何种岩浆过程控制。若计算出元素的总分配系数,就可确定源岩、初始岩浆、端员岩浆或混染物的成分。  相似文献   

17.
超临界流体是有别于富水流体和含水熔体的一种低粘度、高迁移性和高元素携带能力的一类流体,在变质岩体系中,其形成的温压条件一般高于对应的H_2O-岩体系的第二临界端点。俯冲带岩石是自然界最有可能保存超临界流体活动记录的地方,而超临界流体的活动对于地球内部物质循环、俯冲带岩浆作用和俯冲带成矿等方面可以发挥巨大作用。目前对于天然岩石和矿床样品中超临界流体的识别仍处于经验推测阶段,缺乏定量的岩相学和地球化学指标。本文主要基于目前已有研究结果,介绍自然体系中超临界流体的地质特征,包括俯冲带超高压变质岩、高压-超高压脉体以及地幔楔岩石中的超临界流体记录,主要是一些多相包裹体及元素迁移变化的记录,最后讨论超临界流体的相分离与岛弧岩浆作用之间的关系。  相似文献   

18.
伊犁京希—伊尔曼德金矿床的热液蚀变及成矿流体演化特征   总被引:10,自引:1,他引:10  
肖龙  王方正等 《地质学报》2001,75(4):518-526
京希-伊尔曼德金矿床的热液蚀变在空间上有明显的分带性,中心蚀变带以强烈的硅化为主,典型的蚀变矿物组合为石英或玉髓和地开石,中间带为高级泥化带,以地开石-高岭石-石英或玉髓为特征;外带为以蒙脱石-高岭石-伊利石-其他粘土矿物等矿物组合为主的泥化带,蚀变强度和矿物组合的分带性是温度、压力和化学梯度的反映,是流体在不断的水或流体-岩石反应和成分交换的产物。该矿床成矿流体演化过程为:早期酸性(pH=2-3)含矿流体在沿断裂上升过程中,受围岩灰岩中的流体(pH为中性)缓冲,在其进入高渗透性的碎屑岩层时,流速和水-岩石或流休-岩石反应大大加快,并在与大气降水的混合作用下,pH值逐步升高(3-5),产生了流体的温度及成分梯度,在温度和压力迅速下降的条件下,金及蚀变矿物沉淀、结晶生长,形成了蚀变空间分带,中心带保存完好的多孔状石英和地开石等高级泥化矿物组合说明该矿床是高硫化热液体系作用下的产物。  相似文献   

19.
桐柏—大别地区中温热液金矿床同位素地球化学特征   总被引:1,自引:0,他引:1  
本文收集整理了桐伯-大别地区与中温热液金矿床有关的氢,氧,硫,铅同位素组成数据,分析整理结果表明,成矿流体和成矿元素及硫可能来自不同的来源,流体主要为大气降水,成矿元素和硫主要来自流体下渗及回返过程中流经的各类岩石,成矿流体的这种性质对于造山内带及两侧金矿化的产出规律具有相当程度的影响。  相似文献   

20.
实验地球化学研究进展   总被引:1,自引:0,他引:1  
实验技术的完善与成熟,使实验地球化学渗透到许多研究领域,从而成为地球化学及相关学科研究不可缺少的手段之一。本文总结了近20年来国内外实验地球化学在元素的分配行为(分配系数)、高压矿物相与岩石的形成与演化、超高压凝聚态物质性质、超临界条件下岩石-流体相互作用及开放体系下化学地球动力学方面的研究进展及存在的主要问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号