首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Because wind is one of the main forcings in storm surge, we present an idealised process-based model to study the influence of topographic variations on the frequency response of large-scale coastal basins subject to time-periodic wind forcing. Coastal basins are represented by a semi-enclosed rectangular inner region forced by wind. It is connected to an outer region (represented as an infinitely long channel) without wind forcing, which allows waves to freely propagate outward. The model solves the three-dimensional linearised shallow water equations on the f plane, forced by a spatially uniform wind field that has an arbitrary angle with respect to the along-basin direction. Turbulence is represented using a spatially uniform vertical eddy viscosity, combined with a partial slip condition at the bed. The surface elevation amplitudes, and hence the vertical profiles of the velocity, are obtained using the finite element method (FEM), extended to account for the connection to the outer region. The results are then evaluated in terms of the elevation amplitude averaged over the basin’s landward end, as a function of the wind forcing frequency. In general, the results point out that adding topographic elements in the inner region (such as a topographic step, a linearly sloping bed or a parabolic cross-basin profile), causes the resonance peaks to shift in the frequency domain, through their effect on local wave speed. The Coriolis effect causes the resonance peaks associated with cross-basin modes (which without rotation only appear in the response to cross-basin wind) to emerge also in the response to along-basin wind and vice versa.  相似文献   

2.
Climate models are increasingly being used to force dynamical wind wave models in order to assess the potential climate change-driven variations in wave climate. In this study, an ensemble of wave model simulations have been used to assess the ability of climate model winds to reproduce the present-day (1981–2000) mean wave climate and its seasonal variability for the southeast coast of Australia. Surface wind forcing was obtained from three dynamically downscaled Coupled Model Intercomparison Project (CMIP-3) global climate model (GCM) simulations (CSIRO Mk3.5, GFDLcm2.0 and GFDLcm2.1). The downscaling was performed using CSIRO’s cubic conformal atmospheric model (CCAM) over the Australian region at approximately 60-km resolution. The wind climates derived from the CCAM downscaled GCMs were assessed against observations (QuikSCAT and NCEP Re-analysis 2 (NRA-2) reanalyses) over the 1981–2000 period and were found to exhibit both bias in mean wind conditions (climate bias) as well as bias in the variance of wind conditions (variability bias). Comparison of the modelled wave climate with over 20 years of wave data from six wave buoys in the study area indicates that direct forcing of the wave models with uncorrected CCAM winds result in suboptimal wave hindcast. CCAM winds were subsequently adjusted for climate and variability bias using a bivariate quantile adjustment which corrects both directional wind components to align in distribution to the NRA-2 winds. Forcing of the wave models with bias-adjusted winds leads to a significant improvement of the hindcast mean annual wave climate and its seasonal variability. However, bias adjustment of the CCAM winds does not improve the ability of the model to reproduce the storm wave climate. This is likely due to a combination of storm systems tracking too quickly through the wave generation zone and the performance of the NRA-2 winds used as a benchmark in this study.  相似文献   

3.
Abstract

Steep mountainous areas account for 70% of all river catchments in Japan. To predict river discharge for the mountainous catchments, many studies have applied distributed hydrological models based on a kinematic wave approximation with surface and subsurface flow components (DHM-KWSS). These models reproduce observed river discharge of catchments in Japan well; however, the applicability of a DHM-KWSS to catchments with different geographical and climatic conditions has not been sufficiently examined. This research applied a DHM-KWSS to two river basins that have different climatic conditions from basins in Japan to examine the transferability of the DHM-KWSS model structure. Our results show that the DHM-KWSS model structure explained flow regimes for a wet river basin as well as a large flood event in an arid basin; however, it was unable to explain long-term flow regimes for the arid basin case study.  相似文献   

4.
近断层效应使得沉积盆地对地震动放大效应更为复杂。本文针对逆断层发震下三维层状沉积盆地地震反应,基于波动谱元法,采用有限断层动力学模型,模拟断层动力破裂、地壳层地震波传播和层状沉积盆地对地震波散射全过程。在此基础上,对比分析了层状和均质沉积盆地对近断层地震动放大效应的影响,讨论了不同断层倾角下层状沉积盆地地震动加速度特性。结果表明:层状沉积盆地PGA空间分布与均质沉积盆地存在较大差异,由于近断层效应和盆地效应,层状沉积盆地地表局部范围竖向PGA大于水平向PGA;90°断层倾角下层状沉积盆地地表地震动放大范围与60°断层倾角结果明显不同,主要集中在盆地中心区域和断层附近,且幅值远小于60°断层倾角下结果;沿断层走向,盆地内地表地震动加速度峰值对应时刻较盆地外延后。  相似文献   

5.
中国西北地区岩石层瑞利波三维速度结构与沉积盆地   总被引:20,自引:6,他引:20       下载免费PDF全文
研究了中、新生界沉积层所覆盖的我国西北各沉积盆地:准噶尔盆地、塔里木盆地、柴达木盆地,以及一系列中小型盆地和其邻近地域的深部岩石层三维速度结构,探讨其和造山带与油气田的关系.使用了适配滤波频时分析方法,分析了我国数字台网的中长周期瑞利面波资料,计算得到257条混合路径的面波群速度频散.利用改进的分格随机反演理论与方法,从混合路径中提取了100条频散突出路径的4°×4°网格单元的纯路径频散,并反演研究区的三维S波速度结构.频散的周期从1.95s到151.7s,浅部分辨率可达1km,得出了该区深达200km范围内三维瑞利波群速度的分布与特征.所得结果表明:塔里木盆地、哈密-吐鲁番盆地、伊宁盆地以及藏北地区的羌塘盆地具有较好的油气前景.我国西北邻国接壤地带,也均为良好的油气盆地潜在地带.  相似文献   

6.
In this article, we propose an investigation of the modifications of the hydrological response of two Peruvian Amazonas–Andes basins in relationship with the modifications of the precipitation and evapotranspiration rates inferred by the IPCC. These two basins integrate around 10% of the total area of the Amazonian basin. These estimations are based on the application of two monthly hydrological models, GR2M and MWB3, and the climatic projections come from BCM2, CSMK3 and MIHR models for A1B and B1 emission scenarios (SCE A1B and SCE B1). Projections are approximated by two simple scenarios (anomalies and horizon) and annual rainfall rates, evapotranspiration rates and discharge were estimated for the 2020s (2008–2040), 2050s (2041–2070) and 2080s (2071–2099). Annual discharge shows increasing trend over Requena basin (Ucayali river), Puerto Inca basin (Pachitea river), Tambo basin (Tambo river) and Mejorada basin (Mantaro river) while discharge shows decreasing trend over the Chazuta basin (Huallaga river), the Maldonadillo basin (Urubamba river) and the Pisac basin (Vilcanota river). Monthly discharge at the outlet of Puerto Inca, Tambo and Mejorada basins shows increasing trends for all seasons. Trends to decrease are estimated in autumn discharge over the Requena basin and spring discharge over Pisac basin as well as summer and autumn discharges over both the Chazuta and the Maldonadillo basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
张怡辉  胡维平  彭兆亮 《湖泊科学》2020,32(4):1177-1188
基于实测数据,利用验证良好的SWAN风浪模型开展了2018年巢湖风浪变化及分布特征研究.巢湖2018年平均有效波高和波周期分别为0.16 m和1.22 s,整体春季风浪大,秋季风浪小.月均最大值出现在4月,分别为0.22 m和1.36 s,月均最小值出现在11月,分别为0.11 m和1.06 s,变化幅度分别为最大值的52%和22%.月均值整体中巢湖最大,东巢湖次之,西巢湖最小.巢湖月最大有效波高和波周期主要出现在东巢湖或中巢湖,各值月间差异显著,最大变化幅度分别为最大值的61%和27%.不同湖区计算的月均有效波高和波周期较大值分布范围所占湖区的比例不同,中巢湖与东巢湖较大,西巢湖最小.不同月份及湖区较大有效波高出现的时间占比是不一致的,9-11月份时间占比较小,将有利于蓝藻水华的出现.  相似文献   

8.
In this paper, we investigate changes in the wave climate of the west-European shelf seas under global warming scenarios. In particular, climate change wind fields corresponding to the present (control) time-slice 1961–2000 and the future (scenario) time-slice 2061–2100 are used to drive a wave generation model to produce equivalent control and scenario wave climate. Yearly and seasonal statistics of the scenario wave climates are compared individually to the corresponding control wave climate to identify relative changes of statistical significance between present and future extreme and prevailing wave heights. Using global, regional and linked global–regional wind forcing over a set of nested computational domains, this paper further demonstrates the sensitivity of the results to the resolution and coverage of the forcing. It suggests that the use of combined forcing from linked global and regional climate models of typical resolution and coverage is a good option for the investigation of relative wave changes in the region of interest of this study. Coarse resolution global forcing alone leads to very similar results over regions that are highly exposed to the Atlantic Ocean. In contrast, fine resolution regional forcing alone is shown to be insufficient for exploring wave climate changes over the western European waters because of its limited coverage. Results obtained with the combined global–regional wind forcing showed some consistency between scenarios. In general, it was shown that mean and extreme wave heights will increase in the future only in winter and only in the southwest of UK and west of France, north of about 44–45° N. Otherwise, wave heights are projected to decrease, especially in summer. Nevertheless, this decrease is dominated by local wind waves whilst swell is found to increase. Only in spring do both swell and local wind waves decrease in average height.  相似文献   

9.
A boundary integral scheme based on boundary-integral discrete-wave-number approach has been developed to compute the seismic response of two-dimensional irregular-shaped basins with horizontal soil layers. Each layer exhibits a linear gradient of shear wave velocity with depth. The approach combines the boundary-integral representation of the seismic wave field outside the basin with plane wave representation of the seismic wave field inside the basin. The propagation throughout the layers is performed by matrix propagators in which the effect of the vertical variation of the velocity is incorporated by using confluent hyper-geometric functions of the Whittaker type. Our method is tested against otherwell-accepted solutions for the case of a circular basin with excellent agreement. Test of the ground response for a semi-circular basin with radius a shows that stable solutions are obtained if the chosen model parameters satisfy following conditions: (1) the distance from the sources to the interface is greater than 0·1a; (2) the distance between the sources is smaller than a quarter of the incident wavelength; and (3) the discrete wave-number step is smaller than 2π/4a. The computation of ground response of basins with a sharp interface and several horizontal deposits leads to the following main results: (1) the amplification of a basin with velocity gradients is larger than that of a basin with homogeneous layers; (2) the frequencies of the second- and third-order harmonics for a basin with velocity gradients are lower than those of a basin with homogeneous layers; and (3) the response amplitude of the basin with velocity gradients attenuates more slowly in time domain than when layers are homogeneous. Since these results have been obtained for realistic values of basin geometrical and mechanical consideration, they should find some interest in earthquake engineering or seismic microzonation studies. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Scattering of incident plane harmonic pseudo P‐, SH‐, and SV‐waves by a two‐dimensional basin of arbitrary shape is investigated by using an indirect boundary integral equation approach. The basin and surrounding half‐space are assumed to be generally anisotropic, homogeneous, linearly elastic solids. No material symmetries are assumed. The unknown scattered waves are expressed as linear combinations of full‐space time‐harmonic two‐dimensional Green functions. Using the Radon transform, the Green functions are obtained in the form of finite integrals over a unit circle. An algorithm for the accurate and efficient numerical evaluation of the Green functions is discussed. A detailed convergence and parametric analysis of the problem is presented. Excellent agreement is obtained with isotropic results available in the literature. Steady‐state surface ground motion is presented for semi‐circular basins with generally anisotropic material properties. The results show that surface motion strongly depends upon the material properties of the basin as well as the angle of incidence and frequency of the incident wave. Significant mode conversion can be observed for general triclinic materials which are not present in isotropic models. Comparison with an isotropic basin response demonstrates that anisotropy is very important for assessing the nature of surface motion atop basins. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The Moderate Resolution Imaging Spectroradiometer (MODIS), flown on board the Terra Earth Observing System (EOS) platform launched in December 1999, produces a snow‐covered area (SCA) product. This product is expected to be of better quality than SCA products based on operational satellites (notably GOES and AVHRR), due both to improved spectral resolution and higher spatial resolution of the MODIS instrument. The gridded MODIS SCA product was compared with the SCA product produced and distributed by the National Weather Service National Operational Hydrologic Remote Sensing Center (NOHRSC) for 46 selected days over the Columbia River basin and 32 days over the Missouri River basin during winter and spring of 2000–01. Snow presence or absence was inferred from ground observations of snow depth at 1330 stations in the Missouri River basin and 762 stations in the Columbia River basin, and was compared with the presence/absence classification for the corresponding pixels in the MODIS and NOHRSC SCA products. On average, the MODIS SCA images classified fewer pixels as cloud than NOHRSC, the effect of which was that 15% more of the Columbia basin area could be classified as to presence–absence of snow, while overall there was a statistically insignificant difference over the Missouri basin. Of the pixels classified as cloud free, MODIS misclassified 4% and 5% fewer overall (for the Columbia and Missouri basins respectively) than did the NOHRSC product. When segregated by vegetation cover, forested areas had the greatest differences in fraction of cloud cover reported by the two SCA products, with MODIS classifying 13% and 17% less of the images as cloud for the Missouri and Columbia basins respectively. These differences are particularly important in the Columbia River basin, 39% of which is forested. The ability of MODIS to classify significantly greater amounts of snow in the presence of cloud in more topographically complex, forested, and snow‐dominated areas of these two basins provides valuable information for hydrologic prediction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
沉积盆地构造热演化研究进展:回顾与展望   总被引:6,自引:2,他引:6       下载免费PDF全文
构造热演化模拟是研究沉积盆地的重要手段之一,其模型依赖于沉积盆地的成因机制.裂谷盆地构造热演化的定量模型在描述盆地沉降和热流演化方面取得了极大的成功,实现了构造和热的完美结合.而前陆盆地的定量模型更多关注的是构造沉降,在构造与热的结合方面尚不够完善.关于克拉通盆地目前还没有很成熟的定量模型,构造热演化研究程度远远低于裂谷盆地和前陆盆地.随着我国陆域海相沉积盆地油气勘探的突破,对海相沉积盆地热体制的研究迫在眉睫.而我国陆域海相沉积盆地,如塔里木和四川盆地,演化历史长且复杂,是古生代海相克拉通与中、新生代前陆盆地组成的叠合盆地.现有的关于沉积盆地构造热演化的单一模式难以适应复杂的构造—热历史.对我国陆域海相大型沉积盆地进行深入全面的动力学分析,发展叠合盆地的构造—热演化模型,建立相应的构造热演化模式及模拟方法技术,将是一项具有开拓意义并极具挑战性的工作.  相似文献   

13.
沉积盆地形成的张性模式   总被引:7,自引:0,他引:7  
在过去的十余年中,对沉积盆地的成因已取得了很大进展,并提出了许多定性和定量的模型。本文旨在对张性盆地进行讨论,并简要分析影响盆地发展的主要因素和导致岩石圈内部张应力的力源。本文对三种主要模型进行了详细讨论,即纯剪切模型,简单剪切模型和纯剪切-简单剪切联合模型。所有模型虽都建立在对不同盆地的研究基础之上,但它们都揭示出盆地的发展主要受岩石圈内部热动力学过程和沉积物负载作用的控制。其它因素,如拆离面的  相似文献   

14.
Wave measurement and modeling in Chesapeake Bay   总被引:4,自引:0,他引:4  
Three recently measured wind and wave data sets in the northern part of Chesapeake Bay (CB) are presented. Two of the three data sets were collected in late 1995. The third one was collected in July of 1998. The analyzed wind and wave data show that waves were dominated by locally generated, fetch limited young wind seas. Significant wave heights were highly correlated to the local driving wind speeds and the response time of the waves to the winds was about 1 h. We also tested two very different numerical wave models, Simulation of WAves Nearshore (SWAN) and Great Lakes Environmental Research Laboratory (GLERL), to hind-cast the wave conditions against the data sets. Time series model–data comparisons made using SWAN and GLERL showed that both models behaved well in response to a suddenly changing wind. In general, both SWAN and GLERL over-predicted significant wave height; SWAN over-predicted more than GLERL did. SWAN had a larger scatter index and a smaller correlation coefficient for wave height than GLERL had. In addition, both models slightly under-predicted the peak period with a fairly large scatter and low correlation coefficient. SWAN predicted mean wave direction better than GLERL did. Directional wave spectral comparisons between SWAN predictions and the data support these statistical comparisons. The GLERL model was much more computationally efficient for wind wave forecasts in CB. SWAN and GLERL predicted different wave height field distributions for the same winds in deeper water areas of the Bay where data were not available, however. These differences are as yet unresolved.  相似文献   

15.
16.
Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.  相似文献   

17.
The aim of this paper is to assess the relative importance of low flow indicators for the River Rhine and to identify their appropriate temporal lag and resolution. This is done in the context of low flow forecasting with lead times of 14 and 90 days. First, the Rhine basin is subdivided into seven sub‐basins. By considering the dominant processes in the sub‐basins, five low flow indicators were selected: precipitation, potential evapotranspiration, groundwater storage, snow storage and lake storage. Correlation analysis was then carried out to determine the relationship between observed low flows and preselected indicators with varying lags (days) and temporal resolutions (from 1 day to 7 months). The results show that the most important low flow indicators in the Alpine sub‐basins for forecasts with a lead time of 14 days are potential evapotranspiration with a large lag and temporal resolution, and lake levels with a small lag and temporal resolution. In the other sub‐basins groundwater levels with a small lag and temporal resolution are important in addition to potential evapotranspiration with a large lag and temporal resolution. The picture is slightly different for forecasts with a lead time of 90 days. The snow storage in the Alpine sub‐basins and the precipitation in the other sub‐basins also become relevant for low flows. Consequently, the most important low flow indicators in the Alpine sub‐basins for forecasts with a lead time of 90 days are potential evapotranspiration with a large lag and temporal resolution, lake levels with a small lag and temporal resolution and snow storage with a small lag and large temporal resolution. The resultant correlation maps provide appropriate lags and temporal resolutions for indicators to forecast low flows in the River Rhine with different lead times. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This study assesses the 3D amplification effects in shallow basins and quantifies the effects of site‐city interaction (SCI) on high‐rise buildings. A regional‐scale 3D spectral element simulation is conducted on the Tuen Mun‐Yuen Long basin, which contains multiple subbasins with heterogeneous and nonlinear soil profiles, while 3D city models with various building layouts are fully integrated into the basin model for our SCI study. We found a good correlation between spectral amplification factors and soil depths. Site response is significantly amplified at basin edges and centers due to surface waves generated at basin edges and the focusing effects stemming from 3D basin geometry. Transfer functions of 3D basins can be up to fourfold at fundamental frequencies as compared to 1D response, and further amplifications occur at high frequencies due to surface waves. In the SCI simulations, we observe wave trapping in the open space amid buildings resulting in energy concentration and up to twofold PGA amplifications. The wave trapping effect diminishes as the space between buildings increase beyond their range of influence (~100 m). The SCI analyses show that destructive kinetic energy in superstructures increases 28% in one horizontal direction but decreases 22% in the other. Our study concluded that, 1D site response analysis can significantly underestimate the seismic demand in shallow basins. Site‐city interaction of high‐rise buildings increases the short‐period spectra of ground motions, leading to an increase in their story accelerations by up to 50% and to a substantial decrease in the seismic safety of short structures in their vicinity.  相似文献   

19.
C. Fleurant  B. Kartiwa  B. Roland 《水文研究》2006,20(18):3879-3895
The rainfall‐runoff modelling of a river basin can be divided into two processes: the production function and the transfer function. The production function determines the proportion of gross rainfall actually involved in the runoff. The transfer function spreads the net rainfall over time and space in the river basin. Such a transfer function can be modelled using the approach of the geomorphological instantaneous unit hydrograph (GIUH). The effectiveness of geomorphological models is actually revealed in rainfall‐runoff modelling, where hydrologic data are desperately lacking, just as in ungauged basins. These models make it possible to forecast the hydrograph shape and runoff variation versus time at the basin outlet. This article is an introduction to a new GIUH model that proves to be simple and analytical. Its geomorphological parameters are easily available on a map or from a digital elevation model. This model is based on general hypotheses on symmetry that provide it with multiscale versatile characteristics. After having validated the model in river basins of very different nature and size, we present an application of this model for rainfall‐runoff modelling. Since parameters are determined relying on real geomorphological data, no calibration is necessary, and it is then possible to carry out rainfall‐runoff simulations in ungauged river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The spatial resolution of wind forcing fields is critical for modeling ocean surface waves. We analyze here the performance of the non-hydrostatic numerical weather prediction system WRF-ARW (Weather Research and Forecasting) run with a 14-km resolution for hindcasting wind waves in the North Atlantic. The regional atmospheric model was run in the domain from 20° N to 70° N in the North Atlantic and was forced with ERA-Interim reanalysis as initial and boundary conditions in a spectral nudging mode. Here, we present the analysis of the impact of spectral nudging formulation (cutoff wavelengths and depth through which full weighting from reanalysis data is applied) onto the performance of the modeled 10-m wind speed and wind wave fields for 1 year (2010). For modeling waves, we use the third-generation spectral wave model WAVEWATCH III. The sensitivity of the atmospheric and wave models to the spectral nudging formulation is investigated via the comparison with reanalysis and observational data. The results reveal strong and persistent agreement with reanalysis data during all seasons within the year with well-simulated annual cycle and regional patterns independently of the nudging parameters that were tested. Thus, the proposed formulation of the nudging provides a reliable framework for future long-term experiments aiming at hindcasting climate variability in the North Atlantic wave field. At the same time, dynamical downscaling allows for simulation of higher waves in coastal regions, specifically near the Greenland east coast likely due to a better representation of the mesoscale atmospheric dynamics in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号