首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2007年丹东和阜新地区地闪特征   总被引:1,自引:0,他引:1       下载免费PDF全文
针对2007年辽宁地闪资料进行分析。结果表明:丹东和阜新是辽宁南北两个地闪高发区,其地闪变化既有共同之处,也有差异点。两地均为负地闪次数远远多于正地闪次数,正闪比相差不大;正闪比春季大,夏季少;丹东平均正、负地闪峰值电流强度均值大于阜新。地闪多发于午后到夜间,丹东多发于早晨。定义了地闪持续时数,分析发现地闪多集中发生在持续6h及以上的地闪活动过程中,因而持续6h及以上的地闪活动过程潜在危害较大。丹东地闪活动易发月份为5-10月,阜新为5-8月;丹东地闪活动最活跃期为8月,阜新地区为7月。  相似文献   

2.
深圳云地闪时空分布特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1997-2011年云地闪电定位探测资料和深圳国家基本气象站1953-2011年的观测资料,对深圳云地闪电(简称地闪)时空分布特征和雷暴日变化趋势进行分析。结果表明:深圳雷暴日数近59 a来呈下降趋势,小波分析显示年雷暴日数存在5 a周期和10-15 a的次周期;年内地闪频次特征表现为6月和8月双峰形特征,8月为全年地闪次数最多的月份;雷暴的活跃程度与太阳辐射热力条件密切相关,地闪活动高峰出现在14-18时;深圳地闪密度呈现西北多、东南少,内陆地区多、沿江沿海地区少的分布特征,地形、海陆分布是影响地闪空间分布的重要原因;地闪强度的分析表明,正、负闪月平均强度峰值分别出现在2月和6月,负闪强度低于正闪,正、负闪日强度峰值均未出现在频次峰值时段。  相似文献   

3.
利用湖北省闪电定位系统监测资料与武汉市多普勒天气雷达资料同步叠加,对2010年4月12日湖北省东南部地区一次强对流过程的两个致灾雹暴单体进行分析。结果表明:雹暴生消的不同阶段,正地闪和负地闪频数及在雷达回波中的分布呈不同的变化特征,通过地闪频次和地闪在雷达回波中位置的变化可以识别雹暴生命史演变的不同阶段。雹暴Ⅰ产生小冰雹,是一个普通对流单体,闪电以负地闪为主,闪电频率最大为15次·(6 min)-1;正地闪落在风暴发展和消亡阶段,负地闪主要落在35—55 dBz强回波边缘,零星正地闪分布在强回波周围层状云中,雹暴移动路径前侧的负地闪对雹暴移动有一定的指示意义。雹暴Ⅱ是一个典型超级单体,产生直径超过3 cm的大冰雹,闪电频率最大为44次·(6 min)-1,风暴成熟阶段正地闪活跃,16—17时正地闪频繁出现时间与大冰雹持续时间一致;负地闪与25—55 dBz强回波区域吻合较好,正地闪分布在强回波30—55 dBz中心及层状云边缘。对比地闪频数和雹暴成熟阶段的回波强度可以发现,降雹均出现在风暴的成熟阶段,小冰雹发生时地闪频数下降幅度较小,大冰雹发生时地闪频数下降幅度较大,且正地闪比例明显增大。  相似文献   

4.
云下部正电荷区与负地闪预击穿过程   总被引:1,自引:0,他引:1  
张义军  孟青  吕伟涛  马明  郑栋 《气象学报》2008,66(2):274-282
三维雷电观测系统LMA(Lightning Mapping Array)是最近发展起来的基于GPS时钟同步的闪电VHF辐射源到达时间差(TOA)定位技术,能以很高的时间分辨率(50 ns)和空间定位精度(50—100 m)展现闪电放电发展过程的三维时空分布,揭示雷暴中电荷结构及其与放电过程的关系。文中利用三维雷电VHF辐射源观测资料分析了负地闪预击穿过程的时空分布特征,讨论了云下部正电荷区对负地闪发生的影响,其结果表明在首次回击之前存在长时间预击穿过程的负地闪中,预击穿过程是云中部负电荷区与下部正电荷区之间的一种云内放电过程,闪电起始于云中部负电荷区,然后向下发展传输,进入正电荷区后闪电通道在云下部正电荷区水平发展,其放电特征与反极性云闪放电一致,云内放电过程最后阶段的K型击穿激发了地闪的梯级先导,梯级先导穿过云下部正电荷区向下发展传输。云下部正电荷的存在是导致负地闪首次回击之前存在长时间云内预击穿过程的主要原因。  相似文献   

5.
In the summer of 2005, one negative lightning flash was artificially triggered in Shandong Province (117°48′ E, 37°42′N), middle latitude region of eastern China. The flash included 10 return strokes, and the geometric mean value of the current peak was 11.9 kA (the average value was 12.6 kA) with a maximum of 21.0 kA and a minimum of 6.6 kA, similar to the subsequent return strokes in natural lightning. The geometric mean value of half peak width was 39 μs (the average value was 40 μs), which was much larger than the usual result. Based on the Diendorfer and Uman (DU) model, the return-stroke current waveforms and charge distribution along the lightning channel are discussed. The simulated current waveforms, being divided into breakdown and corona current components, are in agreement with the optical measurements when the two different discharge time constants are properly chosen.  相似文献   

6.
The observed reduction in cloud-to-ground lightning in the near-equatorial zone is examined from the perspective of the width of the main negative charge region. Thermodynamic observations of cloud base height also show a climatological minimum value in the near-equatorial region. The association of low cloud bases with both narrow updrafts and narrow charging zones may impede the bridging of the large air gap to ground, and thereby suppress cloud-to-ground lightning activity. This width dependence may be more important than the 10% variation in height of the freezing level in encouraging flashes to ground.  相似文献   

7.
GPS-synchronized measurements of electric (E) field changes induced by lightning flashes were recorded at six stations in the northeastern verge of the Tibetan Plateau. The height and magnitude of charge neutralized by 65 return strokes, including 16 negative cloud-to-ground (CG) flashes and 2 positive CG flashes, have been fitted with the nonlinear least-square method based on the E field changes of CG flashes observed in a typical thunderstorm with larger-than-usual lower positive charge center (LPCC). Results show that the height of the charge region neutralized by negative CG flashes ranges from 3 km to 5 km above the ground, corresponding to an ambient temperature between − 2 °C and − 15 °C. For the two positive CG flashes, the neutralized charge regions are located at a height of about 5.5 km and the ambient temperature is about − 18 °C, indicating the existence of upper positive charge in the thunderstorm.  相似文献   

8.
The intracloud to cloud-to-ground lightning flash ratio (Z) has been estimated for the first time in Southeastern Brazil and in the tropical region using the Lightning Imaging Sensor (LIS) and Brazilian lightning detection network (BrasilDat) lightning data obtained from 1999 to 2005. Geographical variations of Z and their relation to elevation, latitude, precipitation, total lightning density and percentage of positive CG lightning will be discussed. Daily variations of Z will also be presented. The results suggest that Z values are similar to studies outside the tropics and that are influenced by orographic features.  相似文献   

9.
利用SD型闪电频数识别高原雷雨云和冰雹云   总被引:10,自引:2,他引:10  
分析了青海省西宁市和互助县两地的闪电频数资料,结果表明,在青海省人工防雹区山多,地形复杂的情况下,使用SD型闪电计数器可以识别饱点周围40km的雷雨云和冰雹云,当雷暴由山区向平地移动时,5min闪电频数不小于40次,可作为作用的指标,而雷暴从平面向山区移动时,作业指标不小于30次/(5min),雷暴云闪电频数的升度大于10次(5min)也可以作为识别雷雨云和冰雹云的指标,但时效较短,利用SD型闪电频数识别高原雷雨云和冰雹云是一种简便,经济实用的手段,有助于没有雷达等观测设备的偏僻山区防雹作业。  相似文献   

10.
In this study we analyze the effects of continuing current initiated by strokes following a new channel to ground in multiple stroke flashes using high-speed video records, electric field measurements from a fast antenna and lightning detection network data. We observed that the long continuing current initiated by a stroke that follows a new channel also obeys the pattern in the initiation of long continuing current suggested by Rakov and Uman [Rakov, V.A., Uman, M.A., 2003. Lightning: Physics and Effects, 687pp., Cambridge Univ. Press, New York.]. We also verify that the statement of Rakov and Uman [Rakov, V.A. and Uman, M.A., 1990. Some properties of negative cloud-to-ground lightning flashes versus stroke order, Journal of Geophysical Research. 95, 5447–5453.] reporting that: “...strokes initiating long continuing currents tend to have lower initial electric field peak than regular strokes” is valid for strokes that create a new channel to ground and are followed by long continuing current (CC). Apparently the reduction of peak current value (Ip) when the stroke is followed by a long CC is stronger than the Ip increase that is commonly observed when strokes follow a new channel. We also find that the “exclusion zone” proposed by Saba et al. [Saba, M.M.F., Pinto, O. Jr., Ballarotti, M.G., 2006a. Relation between lightning return stroke peak current and following continuing current, Geophysical Research Letters 33, L23807, doi:10.1029/2006GL027455.] is valid for new channels initiating CC, and finally we verify that a number of strokes in the same channel larger than four or the existence of a long CC current do not always consolidate the channel in a multiple stroke flash.  相似文献   

11.
Using high-speed cameras, we have recorded the leaders contained in four natural negative cloud-to-ground (CG) lightning flashes in the summers of 2006 and 2007 at Conghua, Guangdong, China. It was found that the downward negative leaders preceding the first return stroke could propagate at quite different speeds. In one flash, the average speed of the downward negative stepped leader with no branches is about 2.2 × 106 m s− 1, while that of the other 3 flashes are all of the order of 105 m s− 1 with multilevel branches. The luminosity of the leaders shows an increasing tendency in propagating downward to the ground. For the leaders preceding the subsequent strokes, although all of them exhibit high speeds as reported previously. One subsequent leader exhibits an increasing speed from 5.2 × 105 m s− 1 to 1.7 × 106 m s− 1 during its propagation from about 1.26 to 0.36 km above the ground, and its luminosity also increased. The speed and luminosity of a leader between subsequent strokes of a natural lightning appear to decrease as it developed downward. Its speed ranges from 1.1 × 106 to 1.1 × 105 m s− 1, with a height between 1.15 and 0.81 km above the ground.  相似文献   

12.
利用湖北省闪电定位仪、新一代天气雷达资料并结合常规气象观测等资料,对2011年7月24日下午出现在湖北襄阳的一次强雷暴天气过程进行了分析。该过程的两个强风暴分别产生了冰雹和雷雨大风(后期强降水),重点分析了两个强风暴系统生命期雷达回波和闪电(地闪)特征。结果表明:产生冰雹的强风暴是一个孤立的超级单体,降雹发生在超级单体成熟阶段;产生雷雨大风和强降水的强风暴是一个弓状回波,雷雨大风发生在弓状回波顶部,强降水回波成片状且移速较慢;两个风暴的地闪演变特征及闪电在风暴生命史各阶段分布的位置不同。  相似文献   

13.
由于受闪电监测系统限制,已有研究多局限于强对流天气的地闪(cloud-to-ground lightning,CG)活动特征。本文利用VLF/LF三维闪电监测定位资料,结合雷达观测等资料对北京地区一次典型大雹天气过程的全闪活动特征进行了分析。结果表明:降雹发生前,闪电活动主要分布在对流系统的后部,闪电数较少,且以负地闪活动为主;降雹期间,闪电频数显著增加,云闪(intracloud lightning,IC)及正地闪活动明显加强,该阶段闪电活动主要集中在对流系统强回波中心及其前部雷达反射率因子梯度较大的区域;降雹结束之后,强回波中心基本移出北京,北京范围内的闪电频数明显减少。正闪比例在降雹发生前逐渐增大,在降雹期间稳定维持在较大值,降雹结束后迅速减小;云闪比(云闪频数/总闪频数)表现为降雹发生前和降雹结束后逐渐增大趋势,在降雹期间基本维持稳定少变。闪电的电流强度主要集中在5—50 kA之间,20 kA以下的低雷电流强度的云闪和地闪多发生在降雹期间及降雹结束后,而20 kA以上的高雷电流强度的云闪和地闪在降雹发生前占有很大比例,小于5 kA的云闪在大雹发生期间所占比例明显高于地闪。降雹发生前及降雹结束后云闪发生高度在2-6 km,降雹期间有所抬升,约为2-8km。闪电频数峰值超前于降水峰值5-20 min。  相似文献   

14.
为研究雹暴的地闪活动特征,利用地闪资料与3组双雷达探测资料反演的风场,对包含3次降雹的一次雹暴过程的地闪活动特征及其与雹暴动力、微物理条件的关系进行了分析与讨论。主要结果为:(1)整个雹暴过程中发生了3次持续降雹事件,并伴随着3次地闪活动出现峰值,在降雹前地闪频次均有跃增现象。降雹开始后,地闪频次均迅速减少。(2)整个雹暴过程中对应地闪接地位置的0℃层、-20℃层高度的垂直速度范围分别集中在-2—2 m/s和-10-10 m/s。但3次降雹时段的地闪接地位置分别对应-20℃层高度的强下沉气流区附近、强上升与下沉气流区的交界区和弱的下沉气流区。(3)选取的雹暴内最大反射率(Zmax)、-20℃层高度最大反射率(Zmax-20℃)、-20℃层高度大于40 dBz格点数(Sum((Z-20℃>40dBz))3个雷达回波参量与地闪频次变化趋势一致,其相关系数分别为0.64、0.64、0.76。选取的对应地闪接地位置-20℃层高度的最大垂直速度绝对值(|W|max-20℃)和-20...  相似文献   

15.
This work analyses the waveshapes of continuing currents and parameters of M-components in positive cloud-to-ground (CG) flashes through high-speed GPS synchronized videos. The dataset is composed of only long continuing currents (with duration longer than 40 ms) and was selected from more than 800 flashes recorded in São José dos Campos (45.864°W, 23.215°S) and Uruguaiana (29.806°W, 57.005°S) in Southeast and South of Brazil, respectively, during 2003 to 2007 summers. The videos are compared with data obtained by the Brazilian Lightning Location System (BrasilDAT) in order to determine the polarity of each flash and select only positive cases. There are only two studies of waveshapes of continuing currents in the literature. One is based on direct current measurements of triggered lightning, in which four different types of waveshapes were observed; and the other is based on measurements of luminosity variations in high-speed videos of CG negative lightning, in which besides the four types above mentioned two additional types were observed. The present work is an extension of the latter, using the same method but now applied to obtain the waveshapes of positive CG lightning. As far as the authors know, this is the first report on M-components in positive continuing currents. We also have used the luminosity-versus-time graphs to observe their occurrence and measure some parameters (duration, elapsed time and time between two successive M-components), whose statistics are presented and compared in detail to the data for negative flashes. We have plotted a histogram of the M-components elapsed time over the total duration of the continuing current for positive flashes, which presented an exponential decay (correlation coefficient: 0.83), similar to what has been observed for negative flashes.  相似文献   

16.
我国因雷击造成的森林火灾和景区人员伤亡时有发生,近年来,泰山景区也多次发生雷击森林火灾和设备损坏等事故。为了有效地避免或降低雷击对泰山景区的危害,利用2007—2018 年山东省闪电定位系统监测的地闪资料,对泰山景区闪电活动特征及其与地形、海拔的相关性进行分析,从而为有效地开展防雷减灾服务及为地方政府部门决策提供技术支撑。 结果表明:虽然不同年份的落雷次数有所差别,但每年不同海拔高度落雷次数的分布特征比较一致,泰山景区年均地闪密度为1.82 次?km-2?a-1,地闪密度较高的区域集中在主峰和主峰西北方4 ~7 km附近山顶区域;地闪活动的季节性分布特征明显,夏季(6—8月)地闪次数约占全年总地闪次数的86.86%,海拔900 m以下落雷次数较多;日落雷次数的高峰时段为14:00—20:00,落区集中在200~800 m之间;正闪强度均值随海拔升高波动较大,负闪强度随海拔的变化较小;地闪密度随海拔升高呈现上升趋势,海拔高度<800 m的区域地闪密度随海拔增加呈缓慢上升的趋势,海拔高度>1 000 m的区域地闪密度随海拔增加呈明显上升的趋势,同时发现随海拔高度的增加地闪密度和陡度呈现增大和增高的趋势,800 m以上尤其明显,可见泰山景区地闪密度与陡度和海拔高度呈现较好的正相关性。  相似文献   

17.
为了探讨冰晶核化对雷暴云闪电行为的影响,通过已有的三维对流云起、放电模式探讨对比了3种冰晶核化方案,分别为原模式中的经验公式YS方案及与气溶胶相关的DE方案和LP方案。研究表明冰晶核化方案对雷暴云内冰晶微物理发展特征、起电及放电过程均有一定影响。模拟结果显示:(1)考虑了气溶胶的两种新参数化方案中冰晶粒子在高温区(高于-13.8℃)出现,在雷暴云发展过程中DE方案和LP方案冰晶的垂直分布均大于YS方案。(2)DE方案和LP方案中高温区出现的冰晶所带电荷极性有明显的反转现象,导致雷暴云电荷结构产生差异;雷暴云发展旺盛时刻DE方案和LP方案出现三级性电荷结构,而YS方案在整个雷暴云过程都是偶极性,并且DE方案和LP方案中电荷空间分布区域更加广泛。(3)不同核化方案下雷暴云放电特征存在差异,YS方案在偶极性电荷结构背景下没有负地闪产生,而DE方案和LP方案中次正电荷区的存在促进了负地闪的发生,并且负先导出现在较低的高度范围内;DE方案和LP方案中电荷量级较大,因此云闪发生频次以及正、负先导传播次数增加明显。  相似文献   

18.
本文选取2007—2018年金华地区地闪资料,研究分析金衢盆地地闪大数据的气候特征,及地闪资料与地形、海拔高度的对应关系.结果显示:1)2007—2018年金华地区地闪年均次数为45 481次,年均地闪密度为4.3次·km-2·a-1,地闪密度变化范围为2.64~5.92次·km-2·a-1;2)2007—2018年金华地区逐年地闪空间分布差异大,各年的空间分布不均匀,地闪主要分布在西南角的仙霞岭及其至会稽山沿线,以及兰溪市、婺城区及金东区交界的金华山,而东南角海拔较高的大盘山和北面的龙门山的总地闪密度高值面积较小;3)将总地闪密度分段与地形、海拔高度对比显示,80次·km-2以上总地闪密度与高海拔山区有较好的一致性,强地闪(电流强度100 kA以上)密度为5~7次·km-2的25个点中有23个点分布在海拔208~989 m山区;4)下垫面电阻率较低的三江流域地区地闪密度为金衢盆地内最大的"洼地",杭长铁路及附近的地闪密度仅接近平均值,这与其他相关研究结论不一致;5)2007—2018年中有41.7%年份的地闪次数和总地闪次数随海拔高度增加,其他年份的地闪强度均值和总地闪强度均值随海拔高度增长,且均通过了显著性检验.  相似文献   

19.
By using a high-speed video camera system (1000 frames s− 1) in correlation with fast and slow antenna systems, the negative cloud-to-ground (CG) flashes that struck the ground with more than one termination have been analyzed. This kind of stroke, named as multiple-ground terminations stroke (MGTS), was produced by different branches of the same stepped leader during quite a short time. Based on optical images, the 2D progression speed of leader branches was estimated to be in the range (0.9–2.0) × 105 m s− 1. The distance between adjacent striking points of MGTS was from 0.2 km to 1.9 km. The percentage of flashes with multiple-ground terminations occupied about 15% (9 out of 59) of the total negative CG flashes, with a range of 11%–20% in different areas in China. The time intervals between the two adjacent peaks ranged from 4 μs to 486 μs based on the E-field change caused by the MGTS. The flashes which had multiple striking points on the ground during quite a short time may be a common phenomenon in the lightning discharge process. It might produce more serious damage to facilities on the ground and should not be neglected in the design of lightning protection.  相似文献   

20.
北京及其周边地区夏季地闪活动时空特征分析   总被引:13,自引:9,他引:13       下载免费PDF全文
利用M-LDARS闪电定位系统对北京及其周边地区1995~1997年6~9月的闪电观测数据, 分析闪电活动的时空分布特征。结果表明:闪电活动在时间分布上存在两个峰值时段, 13 :00~21:00和23:00~次日05 :00。通过对总地闪、分时段及峰值时段的地闪密度分析, 发现北京及周边地区闪电活动有几个明显的集中区域, 地闪高密度区主要出现在下垫面为山脉和水体的地方, 闪电活动与下垫面的水汽条件关系密切, 且正、负地闪的空间分布也呈现较大差异, 表明雷暴云的电荷结构存在一定差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号