共查询到20条相似文献,搜索用时 15 毫秒
1.
G. B. MORGAN VI I-MING CHOU J. D. PASTERIS S. N. OLSEN 《Journal of Metamorphic Geology》1993,11(1):155-164
Abstract Natural, pure CO2 inclusions in quartz and olivine (c. Fo90) were exposed to controlled fH2 conditions at T= 718–728°C and Ptotal= 2 kbar; their compositions were monitored (before and after exposures) by microsampling Raman spectroscopy (MRS) and microthermometry. In both minerals exposed at the graphite–methane buffer (fH2= 73 bar), fluid speciations record the diffusion of hydrogen into the inclusions. In quartz, room-temperature products in euhedral isolated (EI type) inclusions are carbonic phases with molar compositions of c. CO2(60) + CH4(40) plus graphite (Gr) and H2O, whereas anhedral inclusions along secondary fractures (AS type) are Gr-free and contain H2O plus carbonic phases with compositions in the range c. CO2(60) + CH4(40) to CO2(10) + CH4(90). EI type inclusions in olivine evolved to c. CO2(90–95) + CH4(5–10) without Gr, whereas AS type inclusions have a range of compositions from CO2(90) + CH4(10) ± Gr to CH4(50) + H2(50) ± Gr; neither H2O nor any hydrous species was detected by optical microscopy or MRS in the olivine-hosted products. Differences in composition between and among the texturally distinct populations of inclusions in both minerals probably arise from variations in initial fluid densities, as all inclusions apparently equilibrated with the ambient fH2. These relations suggest that compositional variability among inclusions in a given natural sample does not require the entrapment of multiple generations of fluids. In addition, the absence of H2O in the olivine-hosted inclusions would require the extraction of oxygen from the fluids, in which case re-equilibration mechanisms may be dependent on the composition and structure of the host mineral. Many of the same samples were re-exposed to identical P–T conditions using Ar as the pressure medium, yielding ambient fH2= 0.06 bar. In most inclusions, the carbonic fluids returned to pure CO2 and graphite persisted in the products. Reversal of the mechanisms from the prior exposure at fH2= 73 bar did not occur in any inclusions but the AS types in olivine, in which minor CO2 was produced at the expense of CH4 and/or graphite. The observed non-reversibility of previous mechanisms may be attributed to: (1) slower fluid–solid reactions compared to reactions in the homogeneous fluid phase; (2) depressed activities of graphite due to poor ordering; and/or (3) low ambient fO2 at the conditions of the second run. 相似文献
2.
D. L. WHITNEY 《Journal of Metamorphic Geology》1992,10(6):715-725
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km. 相似文献
3.
G. GIORGETTI M.-L.E FREZZOTTI R. PALMERI E. A. J. BURKE 《Journal of Metamorphic Geology》1996,14(3):307-317
ABSTRACT The metasedimentary sequence of the Deep Freeze Range (northern Victoria Land, Antarctica) experienced high-T/low-F metamorphism during the Cambro-Ordovician Ross orogeny. The reaction Bt + Sil + Qtz = Grt + Crd + Kfs + melt was responsible for the formation of migmatites. Peak conditions were c. 700–750° C, c. 3.5–5 kbar and xH2Oc. 0.5). Distribution of fluid inclusions is controlled by host rock type: (1) CO2-H2O fluid inclusions occur only in graphite-free leucosomes; (2) CO2–CH4± H2O fluid inclusions are the most common type in leucosomes, and in graphite-bearing mesosomes and gneiss; and (3) CO2–N2–CH4 fluid inclusions are observed only in the gneiss, and subordinately in mesosomes. CO2–H2O mixtures (41% CO2, 58% H2O, 1% Nad mol.%) are interpreted as remnants of a synmig-matization fluid; their composition and density are compatible P–T–aH2O conditions of migmatization (c. 750° C, c. 4 kbar, xH2Oc. 0.5). CO2-H2O fluid in graphite-free leucosomes cannot originate via partial melting of graphite-bearing mesosomes in a closed system; this would have produced a mixed CO2–CH4 fluid in the leucosomes by a reaction such as Bt + Sil + Qtz + C ± H2O = Grt + Crd + Kfs + L + CO2+ CH4. We conclude that an externally derived oxidizing CO2-H2O fluid was present in the middle crust and initiated anatexis. High-density CO2-rich fluid with traces of CH4 characterizes the retrograde evolution of these rocks at high temperatures and support isobaric cooling (P–T anticlockwise path). In unmigmatized gneiss, mixed CO2–N2–CH4 fluid yields isochores compatible with peak metamorphic conditions (c. 700–750° C, c. 4–4.5 kbar); they may represent a peak metamorphic fluid that pre-dated the migmatization. 相似文献
4.
High-density CO2 -rich fluid inclusions from a sapphirine-bearing granulite (Hakurutale, Sri Lanka) have been studied by microthermometry, Raman spectrometry and SEM analysis. Based on textural evidence, two groups of inclusions can be identified: primary, negative crystal shaped inclusions (group I) and pseudo-secondary inclusions, which experienced a local, limited post-trapping modification (group II). Both groups contain magnesite as a daughter mineral, occurring in a relatively constant fluid/solid inclusion volume ratio (volsolid =0.15 total volume). CO2 densities for group I and II differ only slightly. Both groups contain a fluid, which was initially trapped at peak metamorphic conditions as a homogeneous (CO2 +MgCO3 ) mixture. Thermodynamic calculations suggest that such a fluid (CO2 +15 vol% MgCO3 ) is stable under granulite facies conditions. After trapping, magnesite separated upon cooling, while the remaining CO2 density suffered minor re-adjustments. A model isochore based on the integration of the magnesite molar volume in the CO2 fluid passes about 1.5–2 kbar below peak metamorphic conditions. This remaining discrepancy can be explained by the possible role of a small quantity of additional water. 相似文献
5.
L.S. HOLLISTER 《Journal of Metamorphic Geology》1988,6(4):467-474
Abstract Nearly pure CO2 fluid inclusions are abundant in migmatites although H2 O-rich fluids are predicted from the phase equilibria. Processes which may play a role in this observation include (1) the effects of decompression on melt, (2) generation of a CO2 -bearing volatile phase by the reaction graphite + quartz + biotite + plagioclase = melt + orthopyroxene + CO2 -rich vapour, (3) selective leakage of H2 O from CO2 + H2 O inclusions when the pressure in the inclusion exceeds the confining pressure during decompression, and (4) enrichment of grain-boundary vapour in CO2 by subsolidus retrograde hydration reactions. 相似文献
6.
J. V. WALTHER 《Journal of Metamorphic Geology》1992,10(6):789-797
The equilibrium constant, K a , of the association reaction to form ion pairs from charged solute species in supercritical solutions can be calculated from a model based on published equations. Log K a at constant pressure is a linear function of the inverse in the dielectric constant of the fluid times temperature. The dielectric properties of H2 O and CO2 at supercritical pressures and temperatures can also be evaluated using the Kirkwood equation. Using Looyenga mixing rules, the dielectric constant of H2 O–CO2 mixtures can be obtained and the change in log K a with addition of CO2 in aqueous solutions evaluated. These changes in log K a with addition of CO2 are consistent with measured changes of log K a with addition of Ar in supercritical H2 O–Ar solutions.
Log Ka of KCl and NaCl increase to an increasing extent as the mole fraction of CO2 increases in H2 O–CO2 solutions. For instance, at 2 kbar and constant temperature between 400 and 600° C, log K a of KCl increases by about two orders of magnitude whilst that of NaCl increases by over four orders of magnitude as the CO2 mole fraction increases from 0.0 to 0.35. Such changes in log K a will have dramatic effects on the solubility of minerals in CO2 -rich environments. 相似文献
Log K
7.
A. M. VAN DEN. KERKHOF J. L. R. TOURET R. KREULEN 《Journal of Metamorphic Geology》1994,12(3):301-310
The enderbites from Tromøy in the central, granulite facies part of the Proterozoic Bamble sector of southern Norway contain dominantly CO2 and N2 fluid inclusions. CO2 from fluid inclusions in quartz segregations in enderbites was extracted by mechanical (crushing) and thermal decrepitation and the δ13C measured. Measurement was also made on samples washed in 10% HCl, oxidized with CuO at high temperatures, and step-wise extracted with progressive heating. Results between the different techniques are systematic. The main results show δ13C of -4.5±1.5% for crushing and -7±2% for thermal decrepitation. δ13C is about constant for CO2 extracted at different temperatures and points to a homogeneous isotopic composition. Due to the presence of carbonate particles and/or induced contaminations for the extraction by thermal decrepitation, the results for the crushing experiments are assumed the most reliable for fluid-inclusion CO2. Very low values of δ13C have not been found in enderbite samples and δ13C combined with δ18O of the host quartzes (8-11%) indicates juvenile values. In addition, the fluid inclusions were examined by microthermometry and Raman analysis and host quartz by acoustic emission and cathodoluminescence. CO2 fluid inclusions have varying densities with a frequency maximum of 0.92 g cm-3 and generally do not concur with trapping densities at granulite conditions. Textures show that CO2 must have been trapped in fluid inclusions in one early event, but transformed to different extents during late isothermal uplift without important fractionation of isotope compositions. The present data support a model of intrusion and crystallization of a CO2-rich enderbitic magma at granuiite conditions. 相似文献
8.
Previous models of hydrodynamics in contact metamorphic aureoles assumed flow of aqueous fluids, whereas CO2 and other species are also common fluid components in contact metamorphic aureoles. We investigated flow of mixed CO2–H2O fluid and kinetically controlled progress of calc‐silicate reactions using a two‐dimensional, finite‐element model constrained by the geological relations in the Notch Peak aureole, Utah. Results show that CO2 strongly affects fluid‐flow patterns in contact aureoles. Infiltration of magmatic water into a homogeneous aureole containing CO2–H2O sedimentary fluid facilitates upward, thermally driven flow in the inner aureole and causes downward flow of the relatively dense CO2‐poor fluid in the outer aureole. Metamorphic CO2‐rich fluid tends to promote upward flow in the inner aureole and the progress of devolatilization reactions causes local fluid expulsion at reacting fronts. We also tracked the temporal evolution of P‐T‐XCO2conditions of calc‐silicate reactions. The progress of low‐ to medium‐grade (phlogopite‐ to diopside‐forming) reactions is mainly driven by heat as the CO2 concentration and fluid pressure and temperature increase simultaneously. In contrast, the progress of the high‐grade wollastonite‐forming reaction is mainly driven by infiltration of chemically out‐of‐equilibrium, CO2‐poor fluid during late‐stage heating and early cooling of the inner aureole and thus it is significantly enhanced when magmatic water is involved. CO2‐rich fluid dominates in the inner aureole during early heating, whereas CO2‐poor fluid prevails at or after peak temperature is reached. Low‐grade metamorphic rocks are predicted to record the presence of CO2‐rich fluid, and high‐grade rocks reflect the presence of CO2‐poor fluid, consistent with geological observations in many calc‐silicate aureoles. The distribution of mineral assemblages predicted by our model matches those observed in the Notch Peak aureole. 相似文献
9.
R. C. NEWTON 《Journal of Metamorphic Geology》1992,10(3):383-400
Charnockitic alteration (arrested orthopyroxene formation in biotite- and amphibole-bearing rocks) occurs in high-grade terranes of all ages. Three criteria are used to show that this alteration was produced in many locations by a migrating fluid phase: (i) diffuseness of the alteration—the alteration zones are often quite unlike discrete migmatitic veins; (ii) relation to deformation—most occurrences show alteration closely associated with warping of foliation or dilation cracks; (iii) open-system alteration—whilst some occurrences represent nearly isochemical alteration, slight changes in bulk composition, often loss of mafic constituents and gain of Na and Si, are evident in detailed mass-balance analysis. Y and sometimes Rb are characteristically depleted. Partial melting sometimes accompanied volatile infiltration, as evidenced by more discrete veins and euhedral orthopyroxene. It is quite unlikely, however, that open-system alteration was produced by escape of viscous quartzo-feldspathic melts. Pervasive migration of low-T lamprophyric (mafic–alkaline, CO2-charged) interstitial liquids is a possibility by virtue of their extreme fluidity, but CO2 infiltration was needed to generate these liquids. Vapour-deficient dehydration melting is another feasible mechanism of orthopyroxene formation which may have operated in conjunction with CO2 infiltration. Characteristic development of charnockitic alteration in some prograde amphibolite to granulite facies transitions, as in the Dharwar Craton of South India, suggests that the alteration is a fundamental feature of the granulite facies metamorphism, implying active and causal participation of migrating fluids. In other high-grade terranes like the Adirondack Mountains of New York, this kind of alteration is rare, and fluid action does not seem to have been important in the metamorphism. A vapour phase participating in charnockitic metamorphism was necessarily one of relatively low H2O, therefore presumably rich in CO2. Consideration of possible large CO2 sources leads to the conclusion that emanations from volatile-rich basalts emplaced in the lower crust are the most probable source of charnockitizing fluids. The ultimate source would therefore be enriched subcontinental lithosphere or asthenosphere. The Rb-depleted pyroxene gneiss (charnockitic) terranes may be characteristic of zones of large-scale transcurrent or oblique-motion faults which tap such great depths. 相似文献
10.
Aqueous solutions that contain volatile (gas) components are one of the most important types of fluid in the Earth's crust. The record that such fluids have left in the form of fluid inclusions in minerals provides a wealth of insight into the geochemical and petrologic processes in which the fluids participated. This article reviews the systematics of CO2–H2O fluid inclusions as a starting point for interpreting the chemically more complex systems. The phase relations of the binary are described with respect to a qualitative P–T–X model, and isoplethic–isochoric paths through this model are used to explain the equilibrium and non-equilibrium behaviour of fluid inclusions during microthermometric heating and cooling. The P–T–X framework is then used to discuss the various modes of fluid inclusion entrapment, and how the resulting assemblage textures can be used to interpret the P–T conditions, phase states, and evolution paths of the parent solutions. Finally, quantitative methods are reviewed by which bulk molar volume and composition of CO2–H2O fluid inclusions can be determined from microthermometric observations of phase transitions. 相似文献
11.
The Whitestone Anorthosite (WSA), located in southern Ontario, underwent granulite facies metamorphism during the Grenville orogeny at 1.16 Ga. During the waning stages of metamorphism fluids infiltrated the outer portions of the anorthosite and promoted the formation of an envelope comprised of upper amphibolite facies mineral assemblages. Also, this envelope corresponds to portions of the anorthosite that underwent deformation related to movement along a high-grade ductile shear zone. Samples from this portion of the anorthosite (the margin) contain CO2-rich inclusions in plagioclase porphyroclasts (relict igneous phenocrysts), matrix plagioclase and garnet. These inclusions have features which normally are interpreted as indicating that they are texturally primary, but they have relatively low CO2 densities (0.61–0.95 g cm-3). Plagioclase from the anorthosite interior contains texturally secondary inclusions with relatively high CO2 densities (generally from 0.99 to 1.10 g cm-3). The high CO2 densities suggest that the inclusions in the plagioclase of the anorthosite core formed prior to inclusions in porphyroclast minerals of the outer portions of the anorthosite, an interpretation that is apparently inconsistent with inclusion textures. This apparent paradox indicates that most fluid inclusions from the anorthosite margin were formed during, or were modified by, the dynamic recrystallization that affected this portion of the WSA. In either case, late formation or modification, the texturally primary fluid inclusions do not contain pristine samples of the peak metamorphic fluid. Furthermore, because shear-related deformation is apparently associated with entrapment of the lowest fluid densities, some strain localization persisted to relatively low temperatures (e.g. less than approximately 500° C). These results constrain a part of the retrograde P–T path for this portion of the Grenville Orogen to temperatures of approximately 400–500° C at pressures of approximately 1–2 kbar. 相似文献
12.
造山型金矿的成矿作用与H20-CO2流体有着密切的联系。然而对阿尔泰山南缘和穆龙套金矿的流体包裹体研究表明,无水的CO2-CH4流体在中亚成矿域中一些金矿床中具有同样重要意义。阿尔泰山南缘萨热阔布金矿包裹体的Xch4达0.20~0.23,穆龙套金矿的XCH4为0.07~0.23。CH4扩大了流体不混溶的范围,有利于对Au的富集沉淀。CO2流体在Au成矿中的重要作用至少包括了三方面的意义,即:缓冲流体PH值范围、提高流体中的Au含量并使其维持与还原硫的络合作用进行迁移;扩大超临界流体的温度范围;增加流体不混溶的区域。CH4的加入扩大了流体不混溶的范围,有利于对Au的富集沉淀。 相似文献
13.
Synthetic fluid inclusions - VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and uplift 总被引:2,自引:0,他引:2
ABSTRACT P-T conditions inferred from fluid inclusions in metamorphic rocks often disagree with the values predicted from mineral equilibria calculations. These observations suggest that inclusions formed during early stages of regional metamorphism continue to re-equilibrate during burial and subsequent uplift in response to differential pressure. P-T conditions accompanying burial and uplift were experimentally simulated by initially forming pure H2O inclusions in quartz at elevated temperatures and pressures, and then re-equilibrating the inclusions in the presence of a 20 wt% NaCl solution such that final confining pressures ranged from 5 kbar above to 4 kbar below the initial internal pressure of the inclusions at the temperature of re-equilibration. In all samples re-equilibrated at confining pressures below the internal pressure, some inclusions were formed that had compositions of 20 wt% NaCl and densities in accord with the final P-T conditions. Additionally, some inclusions were observed to contain fluids of intermediate salinities (between 0 and 20 wt% NaCl). Densities of these inclusions were also consistent with formation at the re-equilibration P-T conditions. The remainder of the fluid inclusions observed in these samples contained pure H2O and their homogenization temperatures corresponded to densities intermediate between the initial and final P-T conditions. In short-term experiments (7 days) where the initial internal overpressure exceeded 1 kbar, no inclusions were found that contained the original density and none were found to have totally re-equilibrated. Instead, most H2O inclusions re-equilibrated until their internal pressures were between ∼750 and 1500 bars above the confining pressure, regardless of the initial pressure differential. In a long-term experiment (52 days), inclusions re-equilibrated at a lower confining pressure than the initial internal pressure displayed homogenization temperatures corresponding to a range in final internal pressures between 0 kbar (i.e. total re-equilibration) and 1.2 kbar above the confining pressure. In experiments where the confining pressure during re-equilibration exceeded the initial internal pressure, densities of pure H2O inclusions increased to values intermediate between the initial and final P-T conditions. Additionally, these inclusions were generally surrounded by a three-dimensional halo of smaller inclusions, also of intermediate density, resulting in a texture similar to that previously ascribed to decrepitation from internal overpressure. In extreme cases where confining pressures were 4–5 kbar above the initial pressure, the parent inclusion almost completely closed leaving only the three-dimensional array of small (5 μm) inclusions, the outline of which may be several times the volume of the original inclusion. Groups of such inclusions closely resemble textures commonly observed in medium- to high-grade metamorphic rocks. Inclusions containing 10 and 42 wt% NaCl solutions trapped at 600 °c and 3 kbar were re-equilibrated at 600 °c and 1 kbar for 5 days in dry argon to evaluate the importance of H2O diffusion as a mechanism of lowering the inclusion bulk density. Salinities of re-equilibrated inclusions obtained from freezing point depressions and halite dissolution temperatures indicate that original compositions were preserved. Density changes similar to those previously described were noted in these experiments, in inclusions showing no visible microfractures. Therefore, density variations observed in inclusions in this study, re-equilibrated under rapid deformation conditions, are considered to result from a change in the inclusion volume, without significant loss of contents by diffusion or leakage. 相似文献
14.
Abstract. This study examined the effect of CO2 on NaCl solubility in hydrothermal fluid, with the synthetic fluid inclusion technique. Fluid inclusions of 30–40 wt% NaCl and 5 mol % CO2 were synthesized, and their halite dissolution temperatures, Tm (halite), were measured. The solubilities of NaCl in CO2 -bearing aqueous fluid were obtained at 160–320C under vapor-saturated pressures. The Tm (halite) value in aqueous fluid with 5 mol % CO2 obtained in this study agrees with that of Schmidt et al. (1995), showing that 5 mol % CO2 reduces the solubility of NaCl by about 1 wt%.
Calculation of magnetite solubility suggests that 5–10 mol % CO2 decreases magnetite solubility by 4.5–8.9 % relative to the magnetite solubility in CO2-free solution. Therefore, an increase of CO2 content in ore-forming solutions may cause deposition of iron minerals and produce ore deposits. 相似文献
Calculation of magnetite solubility suggests that 5–10 mol % CO2 decreases magnetite solubility by 4.5–8.9 % relative to the magnetite solubility in CO2-free solution. Therefore, an increase of CO2 content in ore-forming solutions may cause deposition of iron minerals and produce ore deposits. 相似文献
15.
P-T-X (CO2 ) conditions in mafic and calc-silicate hornfelses from Oberon, New South Wales, Australia
A. S. ANDREW 《Journal of Metamorphic Geology》1984,2(2):143-163
Abstract The Rockley Volcanics from near Oberon, New South Wales occur within the aureole of the Carboniferous Bathurst Batholith and have been contact metamorphosed at P ∼ 100 ± 50MPa (10.5kbar) and a maximum T ∼ 565°C in the presence of a C–O–H fluid. Prior to contact metamorphism the volcanics were regionally metamorphosed and altered with the extensive development of actinolite, chlorite, plagioclase, quartz and calcite. The contact metamorphosed equivalents of these rocks have been subdivided into: Ca-poor (cordierite + gedrite), Mg-rich (amphibole + olivine + spinel), mafic (amphibole + plagioclase) and Ca-rich (amphibole + garnet + diopside; diopside + plagioclase; garnet + diopside + wollastonite) rocks.
The chemistry of the minerals in the hornfelses was controlled by the bulk rock chemistry and fluid composition. Pargasites and hastingsites as well as an unusual phlogopite with blue green pleochroism, are found in Ca-rich hornfelses. A comparison of the assemblages with experimentally derived equilibria suggests that the fluid phase associated with the Ca-rich hornfelses was water-rich (Xco2 = 0.1 to 0.3) while that associated with the Mg-rich hornfelses was enriched in CO2 (Xco2 > 0.7). The different hornfels types have reacted to contact metamorphism independently in both their solid and fluid chemistries. 相似文献
The chemistry of the minerals in the hornfelses was controlled by the bulk rock chemistry and fluid composition. Pargasites and hastingsites as well as an unusual phlogopite with blue green pleochroism, are found in Ca-rich hornfelses. A comparison of the assemblages with experimentally derived equilibria suggests that the fluid phase associated with the Ca-rich hornfelses was water-rich (X
16.
Two impure ultrahigh-pressure (UHP) marbles, a calcite marble with the peak assemblage Grt + Phe + Cpx + Rt + (Arg) and a dolomite marble with the peak assemblage Crn + Chl + Rt + Dol (±Arg), from the same lens from the polymetamorphic complex of the Brossasco-Isasca Unit (BIU) (southern Dora-Maira Massif) have been petrologically investigated and modelled by calculating P – T phase-diagram projections for H2 O–CO2 mixed-volatile systems. Thermobarometric data obtained from the calcite marble suggest Alpine peak conditions in the diamond stability field (4.0 GPa at 730 °C), and allow reconstruction of the earlier portion of the Alpine retrograde P – T path, which is characterized by a significant decompression coupled with a moderate and continuous cooling to 650 °C at 2.50 GPa. The modelled fluid compositions at peak conditions point to 0.025 ≤ X (CO2 ) ≤ 0.10 and X (CO2 ) ≤ 0.0012 in the calcite marble and dolomite marble, respectively, suggesting fluid heterogeneity at the local scale and an internally buffered fluid evolution of the studied impure marbles. The lack of micro-diamond in the BIU marbles is explained by the very-low X (CO2 ) values, which favoured relatively high f O2 -conditions, preventing the formation of diamond at the UHP peak metamorphic conditions. 相似文献
17.
Dehydration reaction and isotope front transport induced by CO2 infiltration at Nuliyam, South India
The field relations from a quarry at Nuliyam, South India, illustrate dehydration of an amphibolite facies gneiss to granulite facies charnockite by CO2 influx, over a scale of 30 m. Both the calc-silicate source of the fluids and the full extent of their penetration into the gneiss are preserved in a continuous section. Fluid flow is by a hydraulic fracture mechanism, but is thought to be pervasive. The sharp reaction front predicted by the continuum mechanical theory for advective fluid transport is not observed. The front spreading is on too large a scale for either diffusive or dispersive control and is due to local kinetic disequilibrium between the fluid and rock, although the divariant nature of the reaction may also have a limited effect. The time-integrated fluid flux varies from the instantaneous porosity at the fluid front to 20 vol. % adjacent to the calc-silicate. Carbon isotope budgets suggest that decarbonation of the calc-silicate by a Rayleigh fractionation process provides a sufficient source for the CO2 influxing into the gneiss. Graphite abundances vary from 0.01 to 0.1% (by weight), it is principally derived by precipitation from the fluid and may be modelled from phase equilibria. Carbon isotope fronts coincide with the reaction front on the scale of sampling, although isotopic disequilibrium between graphite and inclusion-CO2 also implies local fluid-rock disequilibrium. 相似文献
18.
恰夏铜矿床位于新疆阿尔泰山南缘克兰火山-沉积盆地内,赋矿地层主要为下泥盆统康布铁堡组上亚组变质岩系.脉状铜矿化主要特征为:早期顺层石英脉,呈脉状或透镜状沿变质片理分布,有星点状黄铁矿产出;晚期含铜黄铁矿-石英脉,斜切变质围岩,黄铜矿以浸染状分布于石英脉裂隙中.石英脉中流体包裹体主要为富CO2包裹体,其次为水溶液包裹体,同时含有少量的碳质流体包裹体.显微测温研究表明,早期顺层石英中原生富CO2流体包裹体,CO2三相点温度(tm,CO2)集中在-61.5~-57.5℃,CO2部分均一温度(th,CO2)集中在25~27℃,完全均一温度(th,tot)集中于223~280℃,流体密度为0.82~0.90 g/cm3;含铜黄铁矿-石英脉中原生富CO2包裹体的tm,CO2集中于-61.5~-58.7℃,th,CO2集中在23.5~28.7℃,th,tot集中在230 ~ 310℃,流体密度0.81~0.86 g/cm3.成矿流体为中高温、中低盐度、富CO2的CO2-H2O-NaCl±CH4±N2体系.恰夏铜矿脉状铜矿化的成矿流体特征与造山型金矿床的流体包裹体特征类似,结合矿床产出的地质背景、控矿构造特征,认为脉状铜矿化的成因与造山-变质热液有关,是阿尔泰山南缘晚泥盆世一二叠纪造山-变质作用的产物.SRXRF测试富CO2流体包裹体中金属微量元素,显示其富集Au,可能表明富CO2流体对金的富集起到一定作用. 相似文献
19.
Bruna B. Carvalho Omar Bartoli Fabio Ferri Bernardo Cesare Silvio Ferrero Laurent Remusat Luca S. Capizzi Stefano Poli 《Journal of Metamorphic Geology》2019,37(7):951-975
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids. 相似文献
20.
Abstract The Llano Uplift in central Texas is a Grenville aged (c. 1.1 Ga) metamorphic terrane consisting predominantly of amphibolite facies mineral assemblages. The formation of these assemblages has been attributed to the emplacement of relatively late granite plutons throughout the area. Two types of granitic intrusion have previously been recognized: (1) Town Mountain Granites, which occur as relatively large, circular-shaped bodies of coarse-grained granite, and (2) Younger Granites which are present as smaller and more irregular bodies of finer-grained granite. In the central part of the uplift, wollastonite-bearing calc-silicate rocks occur within the Valley Spring Gneiss. The development of these calc-silicate rocks has been linked to infiltrating fluids presumably derived from spatially associated Younger Granites. The stability of coexisting quartz, calcite, wollastonite, grossular and anorthite and coexisting quartz, calcite, wollastonite, andradite and hedenbergite shows that the calc-silicate rocks equilibrated under H2O-rich conditions with χCO2 <0.10. Fluid inclusions present within the calc-silicate minerals are H2O-rich with salinities of <17 wt% equivalent NaCl. The absence of any detectable CO2 in the fluid inclusions may indicate entrapment of the inclusions at lower pressures and more H2O-rich conditions compared to the stability of the peak metamorphic mineral assemblage. Homogenization temperatures, measured for texturally primary inclusions, range from 360 to 368° C corresponding to a density range from 0.53 to 0.82 g/cm3. Isochores for these fluid inclusions, when combined with the stability of the solid-solid equilibria Grs + Qtz = Wo + An, yield formation conditions of 500–550° C at 1–2 kbar. This indicates that the granitic intrusions involved in the formation of the Blount Mountain calc-silicates were emplaced at a pressure of at least 1–2 kbar. 相似文献