首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vertical oscillations of the gas at the outer edge of the accretion disk in a semi-detached binary due to interaction with the stream of matter from the inner Lagrangian point L 1 are considered. Mixing of the matter from the stream from L 1 with matter of the disk halo results in the formation of a system of two diverging shocks and a contact discontinuity, or so-called “hot line”. The passage of matter through the region of the hot line leads to an increase in its vertical velocity and a thickening of the disk at phases 0.7?0.8. Subsequently, the matter moving along the outer edge of the disk also experiences vertical oscillations, forming secondary maxima at phases 0.2?0.4. It is shown that, for systems with component mass ratios of 0.6, these oscillations will be amplified with each passage of the matter through the hotline zone, while the observations will be quenched in systems with component mass ratios ~0.07 and ~7. The most favorable conditions for the flow of matter from the stream through the edge of the disk arise for component mass ratios ~0.62. A theoretical relation between the phases of disk thickenings and the component mass ratio of the system is derived.  相似文献   

2.
The dynamics of a galactic disk in a non-axisymmetric (triaxial) dark halo is studied in detail using high-resolution, numerical, hydrodynamical models. A long-lived, two-armed spiral pattern is generated for a wide range of parameters. The spiral structure is global, and the number of turns can be two or three, depending on the model parameters. The morphology and kinematics of the spiral pattern are studied as functions of the halo and disk parameters. The spiral structure rotates slowly, and its angular velocity varies quasi-periodically. Models with differing relative halo masses, halo semi-axis ratios, distributions of matter in the disk, Mach numbers in the gaseous component, and angular rotational velocities of their halos are considered.  相似文献   

3.
Budanova  N. O.  Bajkova  A. T.  Bobylev  V. V.  Korchagin  V. I. 《Astronomy Reports》2019,63(12):998-1009

Results of a study of the kinematic and chemical properties of globular clusters of the Milky Way based on data from the Gaia DR2 catalog and meaurements with the Hubble Space Telescope are presented. A new method for dividing globular clusters into Galatic subsystems based on the elements of their Galactic orbits is proposed. Samples of globular clusters belonging to the bar/bulge, thick disk, and halo of the Milky Way are obtained. The mean metallicities of the globular clusters in various subsystems are calculated. The mean metallicities of globular clusters of the thick disk and halo display statistically significant differences. At the same time, no statistically significant differences are present between the mean metallicities of halo globular clusters moving in the direction of rotation of the Galactic disk and those moving in the retrograde direction. This argues against the suggestion that retrograde and prograde globular clusters have different origins.

  相似文献   

4.
5.
The condition for gravitational stability of the stellar disks of the galaxies NGC 936 and NGC 3198 makes maximum disk models unacceptable. We present mass estimates for these objects' spheroidal components. The mass of the dark halo of NGC 3198, within four disk radial scale lengths, exceeds its disk mass by a factor of 1.6 to 2. The masses of the disk and spheroidal subsystem (halo + bulge), within four radial scale lengths, are approximately the same for NGC 936.  相似文献   

6.
In our model describing the leakage of ionizing radiation from the Galactic disk into the halo, disk stars can contribute substantially to the ionization of halo objects such as high-velocity clouds and the Magellanic stream. This ionization is produced by a relatively hard radiation field, which can maintain its ionizing effect even at a considerable distance from the plane of the disk.  相似文献   

7.
The influence of the formation and evolution of a (disk) galaxy on the matter distribution in the dark-matter halo is considered. Calculations of the evolution of an isolated dark-matter halo were carried out with and without including a baryonic component. N-body simulations (for the dark-matter halo) and gas-dynamical numerical simulations (for the baryonic gas) were used for this analysis. Star formation, feedback, and heating and cooling of the interstellar medium were taken into account in the gas-dynamical calculations. The results of these numerical simulations with high spatial resolution indicate that 1) including the star formation resolves the so-called cusp problem (according to CDMcosmological models, the density distribution in the central regions of the dark-matter halo should have a distinct peak (cusp), which is not shown by observations); 2) the interaction of the dark matter with dynamical substructures of the stellar-gas galactic disk (spiralwaves, a bar) affects the shape of the dark-matter halo. In particular, the calculated dark-matter distribution in the plane of the disk is more symmetric when the baryonic component is taken into account.  相似文献   

8.
We present BVRI surface photometry of the late-type spiral galaxy NGC 3627. The distributions of the color indices and extinction-independent Q indices show that the observed photometric asymmetry in the inner part of the galaxy, including the bar, is due to an asymmetric distribution of absorbing material. The bluest regions of star formation are located in a ring surrounding the bar. The background-subtracted color indices of individual blue knots are used to estimate the ages of young stellar aggregates. In combination with previously published photometric data, our measurements indicate that the R-band profile of the disk is rather flat in its inner part (r<50″) and becomes steeper further from its center. We estimate the mass of the disk and dark halo by decomposing the rotation curve. The mass-to-light ratio M/L B for the stellar disk is ≈1.4. The galaxy possesses a massive dark halo; however, the mass of the disk exceeds that of the halo in the inner part of the galaxy, which displays a regular spiral structure.  相似文献   

9.
The stability of magnetohydrodynamic oscillations in a protostellar disk with a toroidal magnetic field is analyzed. It is shown that, apart from the aperiodic magnetorotational instability, two other types of periodic instabilities of non-axisymmetric perturbations can exist. The simultaneous presence of azimuthal and vertical components of the wave vector are necessary for these to exist. One instability is due to the inductive winding-up of the azimuthal magnetic field of the wave, and the other arises when the field amplitude is increased by a comoving Hall wave, transferring magnetic field into a region of enhanced field intensity. The bandwidths of the unstable wave numbers are analyzed as a function of the Hall current, the β parameter of a plasma, and the angle between the direction of wave propagation and the plane of the disk. Regions in the accretion disks typical of T Tauri stars are indentified where these instabilities could be most active.  相似文献   

10.
An analysis of the abundance of cobalt in atmospheres of red giants, indicates they can be divided into two groups: stars with the normal [Co/Fe] abundance and those with a small [Co/Fe] excess. A comparative analysis of the spectrograms taking into account the effect of superfine splitting provides evidence for a [Co/Fe] excess in some stars. We have also detected physical and kinematical differences between these groups. Stars with a [Co/Fe] excess are related to the thick-disk population of the Galaxy. These stars are older and less massive, display lower metallicities, and have Galactic velocities corresponding to those of thick-disk objects. It is suggested that the observed pattern of a [Co/Fe] excess in the halo and thick disk reflects the chemical composition of the Galaxy at a very early stage of its evolution, when Population III objects existed. The lower abundance excess in the thick disk compared to the halo and the absence of an excess in the thin disk are due to the contributiuon from Type I supernovae at later stages of the Galaxy’s evolution. We have found that the thick disk of the Galaxy displays gradients of its cobalt and iron abundances, possibly providing evidence that the thick disk formed as a result of the collapse of a protogalactic cloud.  相似文献   

11.
N-body dynamical simulations are used to analyze the conditions for the gravitational stability of a three-dimensional stellar disk in the gravitational field of two rigid spherical components—a bulge and halo whose central concentrations and relative masses vary over wide ranges. The number of point masses N in the simulations varies from 40 to 500 000 and the evolution of the simulated systems is followed over 10–20 rotation periods of the outer edge of the disk. The initially unstable disks are heated and, as a rule, reach a quasi-stationary equilibrium with a steady-state radial-velocity dispersion cr over five to eight turns. The radial behavior of the Toomre stability parameter QT(r) for the final state of the disk is estimated. Simple models are used to analyze the dependence of the gravitational stability of the disk on the relative masses of the spherical components, disk thickness, degree of differential rotation, and initial state of the disk. Formal application of existing, analytical, local criteria for marginal stability of the disk can lead to errors in cr of more than a factor of 1.5. It is suggested that the approximate constancy of QT?1.2–1.5 for r?(1–2)×L (where L is the radial scale of disk surface density), valid for a wide range of models, can be used to estimate upper limits for the mass and density of a disk based on the observed distributions of the rotational velocity of the gaseous component and of the stellar velocity dispersion.  相似文献   

12.
The influence of close passages of galaxies on the shapes of disk galaxies and the distribution of stars in them is studied for several types of interactions in the framework of the restricted N-body problem. Depending on the conditions adopted, either two spiral density waves or ring structures are formed in the stellar disk of the galaxy. These structures can generate star formation fronts with the corresponding shape, as are observed in disk galaxies. Our calculations can also be applied to study the influence of the passage of a nearby star on a protoplanetary disk. The formation of ring structures there could specify the type of planet formation in the outer regions of the planetary system and the distribution of semimajor axes for the planetary orbits. We use the same model to study the generation and evolution of spiral density waves in the stellar disks of galaxies as a result of the recently found asymmetry of the gravitational potential in the massive dark haloes in disk galaxies. The dipole component of the gravitational field of the halo can continuously permanently generate the spiral structure in disk galaxies.  相似文献   

13.
Spectroscopic observations of three lenticular (S0) galaxies (NGC 1167, NGC 4150, and NGC 6340) and one SBa galaxy (NGC 2273) have been taken with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences aimed to study the structure and kinematic properties of early-type disk galaxies. The radial profiles of the stellar radial velocities and the velocity dispersion are measured. N-body simulations are used to construct dynamical models of galaxies containing a stellar disk, bulge, and halo. The masses of individual components are estimated formaximum-mass disk models. A comparison of models with estimated rotational velocities and the stellar velocity dispersion suggests that the stellar disks in lenticular galaxies are “overheated”; i.e., there is a significant excess velocity dispersion over the minimum level required to maintain the stability of the disk. This supports the hypothesis that the stellar disks of S0 galaxies were subject to strong gravitational perturbations. The relative thickness of the stellar disks in the S0 galaxies considered substantially exceed the typical disk thickness of spiral galaxies.  相似文献   

14.
We have derived the LTE neodymium abundances in 60 cool stars with metallicities [Fe/H] from 0.25 to ?1.71 by applying a synthetic-spectrum analysis to spectroscopic observations of NdII lines with a resolution of λ/Δλ?60 000 and signal-to-noise ratios of 100–200. We have improved the atomic parameters of NdII and blending lines by analyzing the corresponding line pro files in the solar spectrum. Neodymium is overabundant with respect to iron in halo stars, [Nd/Fe]=0.33±0.09, with the [Nd/Fe] ratio decreasing systematically with metallicity when [Fe/H]>?1. This reflects an onset of efficient iron production in type I supernovae during the formation of the thick disk. The [Nd/Ba] and [Nd/Eu] abundance ratios behave differently in halo, thick-disk, and thin-disk stars. The observed abundance ratios in halo stars, [Nd/Ba]=0.34±0.08 and [Nd/Eu]=?0.27±0.05, agree within the errors with the ratios of the elemental yields for the r-process. These results support the conclusion of other authors based on analyses of other elements that the r-process played the dominant role in the synthesis of heavy elements during the formation of the halo. The [Nd/Ba] and [Nd/Eu] ratios for thick-disk stars are almost independent of metallicity ([Nd/Ba]=0.28(±0.03)?0.01(±0.04) [Fe/H] and [Nd/Eu]=?0.13(±0.03)+0.05(±0.04) [Fe/H]) but are smaller in absolute value than the corresponding ratios for halo stars, suggesting that the synthesis of s-process nuclei started during the formation of the thick disk. The s-process is estimated to have contributed ?30% of the neodymium produced during this stage of the evolution of the Galaxy. The [Nd/Ba] ratio decreases abruptly by 0.17 dex in the transition from the thick to the thin disk. The systematic decrease of [Nd/Ba] and increase of [Nd/Eu] with increasing metallicity of thin-disk stars point toward a dominant role of the s-process in the synthesis of heavy elements during this epoch.  相似文献   

15.
Stellar photometry obtained using the Hubble Space Telescope is used to study the distributions of the number densities of stars of various ages in 12 irregular and dwarf spiral galaxies viewed edge-on. Two subsystems can be distinguished in all the galaxies: a thin disk comprised of young stars and a thick disk containing a large fraction of old stars (primarily red giants) in the system. Variations of the stellar number density in the thin and thick disks in the Z direction perpendicular to the plane of the galaxy follow an exponential law. The size of the thin disk corresponds to the visible size of the galaxy at the μ = 25 mag/arcsec2 isophote, while the thick disk is a factor of two to three larger. In addition to a thick disk, the massive irregular galaxy M82 also has a more extended stellar halo that is flattened at the galactic poles. The results of our previous study of 12 face-on galaxies are used together with the new results presented here to construct an empirical model for the stellar structure of irregular galaxies. Original Russian Text ? N.A. Tikhonov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 7, pp. 579–588.  相似文献   

16.
We test the hypothesis put forward by Bosma (1981) that the surface density of dark matter is proportional to the surface density of HI, using decompositions of the rotation curves of a number of galaxies according to the THINGS, along with data for the galaxy NGC 6822. The rotation curves of these galaxies can be explained by assuming the existence of a massive gaseous disk in the absence of a dark halo, although the proportionality factor ??dark/??HI between the surface densities of dark matter and HI is different for different galaxies. However, there emerges the problem of the gravitational stability of galaxies whose stellar-velocity dispersions have been estimated, if the thickness of the dark-matter disk is similar to or less than the thickness of the stellar disk. The proportionality between ?? dark and ??HI is probably due to the fact that the radial profiles of ??HI for galaxies with flat rotational curves are close to the critical density of a gravitationally stable gaseous layer (??HI ?? R ?1), and ??dark(R) for a pseudo-isothermal halo obeys the same law.  相似文献   

17.
A series of numerical dynamical models for the LMC are constructed in order to fit the observed rotational velocities and stellar velocity dispersions at various galactocentric distances. The models include a three-dimensional spherical disk and nonevolving spherical components with various relative masses. The two LMC rotation curves presented by Kim et al. (1998) and Sofue (2000), which differ strongly in the inner region of the galaxy, are compared. The latter curve requires the presence of a massive dark bulge. Models based on the rotation curve of Sofue (2000) cannot account for the observed velocity dispersion or the presence of a long-lived bar in the galaxy. A model with no dark bulge is in good agreement with the observations if we assume that the disk dominates over the halo in terms of the mass within the optical radius (about 7 kpc).  相似文献   

18.
We consider the structure and formation of the circumbinary envelopes in semi-detached binary systems. Three-dimensional numerical simulations of the gas dynamics are used to study the flow pattern in a binary system after it has reached the steady-state accretion regime. The outer parts of the circumbinary envelope are replenished by periodic ejections from the accretion disk and circum-disk halo through the vicinity of the Lagrange point L3. In this mechanism, the shape and position of a substantial part of the disk is specified by a precessional density wave. On timescales comparable to the orbital period, the precessional wave (and hence an appreciable fraction of the disk) will be virtually stationary in the observer’s frame, whereas the positions of other elements of the flow will vary due to the orbital rotation. The periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near L3. All these factors lead to a periodic increase of the matter flow into the outer layers of the circumbinary envelope through the vicinity of L3. The total duration of the ejection is approximately half the orbital period.  相似文献   

19.
The results of three-dimensional MHD numerical simulations are used to investigate the characteristic properties of the magnetic-field structures in the accretion disks of semi-detached binary systems. It is assumed that the intrinsic magnetic field of the accretor star is dipolar. Turbulent diffusion of the magnetic field in the disk is taken into account. The SS Cyg system is considered as an example. The results of the numerical simulations show the intense generation of a predominantly toroidal magnetic field in the accretion disk. Magnetic zones with well defined structures for the toroidal magnetic field form in the disk, which are separated by current sheets in which there ismagnetic reconnection and current dissipation. Possible observational manifestations of such structures are discussed. It is shown that the interaction of a spiral precessional wave with the accretor’s magnetosphere could lead to quasi-periodic oscillations of the accretion rate.  相似文献   

20.
A new type of dimmings, or transient coronal holes (i.e., regions of reduced soft-X-ray and EUV emission), is revealed in analyses of difference solar images obtained with the SOHO EIT ultraviolet telescope at 195 Å. Such features can be observed on the solar disk after halo-type coronal mass ejections (CMEs). If several active regions, filaments, and other structures are present on the disk during a major eruptive event, then strongly anisotropic, channel-shaped (“channeled”) dimmings coexist with relatively compact dimmings adjacent to the eruption center. The channeled dimmings are comparable to the compact dimmings in terms of their contrast; stretch along several narrow, extended features (channels); and can span nearly the entire visible disk. Coronal waves, which appear as fronts of enhanced brightness traveling ahead of the dimmings in some halo CME events, are also anisotropic. We argue that such transient phenomena are closely related to the strong disturbance and restructuring of large-scale magnetic fields involved in CMEs, and the channeled character of the dimmings reflects the complexity of the global solar magnetosphere, in particular, near the solar-activity maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号