首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase‐resolved FUV observations of three Algol‐type interacting binaries (V356 Sgr, TT Hya, and RY Per) have been made during totality with the Far Ultraviolet Spectroscopic Explorer to map the location of the hot circumstellar plasma that produces emission lines of O VI, Si III,IV, S IV, C III, and N II. Since OVI shows very little variation in profile, strength, and velocity as the disk of the secondary occults the line formation region, we conclude that the emission originates in material that has a substantial flow perpendicular to the orbital plane (perhaps a bipolar jet). The behavior of the emission lines from the moderate‐ionization species suggests that the plasma producing these emission features has a large equatorial component. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10-7 d yr-1. The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.  相似文献   

3.
We present our photometric observations of the T Tauri star H 187. They confirm our conclusion that a new extended eclipse has begun in this young object. By the end of 2005, H 187 reached its minimum light following which its brightness began to slowly increase. Comparison with the previous ~3.5-yr-long eclipse observed by Cohen et al. shows that the new eclipse follows the previous eclipse fairly closely and, hence, it was caused by a second passage of the same extended dust or gas-dust cloud around the object. We have estimated the period between these events to be 4.7 yr. The object reddened during the eclipse, suggesting that the extinction was produced by small grains ~0.1μm in size. Possible mechanisms of such unusual eclipses are discussed. We draw an analogy between these eclipses and the cycles of photometric activity observed in UX Ori stars. Light curves similar to those observed for H 187 are shown to be obtained in the model of a young binary system with a low-mass companion accreting matter from the remnants of a protostellar cloud at a rate of ~10?9 M yr?1.  相似文献   

4.
In this work, the analysis of the photoelectric light curve (LC) in the broad‐band filter (400–700 nm) for the UU And system was carried out using the PHOEBE program (vers. 0.31a). The absolute dimensions of the system are determined and its evolution is discussed. Moreover, the period changes of the system are studied using updated OC data, which shows a cyclic change with a period of Pmod = 18 yr. This was attributed to a magnetic activity cycle operating in this system. In addition to the cyclic change, a long‐term secular variation due to mass transfer from the secondary to the primary component with a rate of 6.17×10–9 M yr–1 was also detected. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
We present analysis and spot solutions based on yet unpublished B and V photoelectric observations on the active binary system SV Cam, carried out at Piszkéstető Mountain Station of Konkoly Observatory Budapest. The present spot solutions are based on the observed light curves in September 1993 and July 1994. Comparison of recent and older spot solutions – taken from the literature – suggests long term differences, but these divergences might be caused by some differences of the applied computational methods. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson‐Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A‐type contact binary. The period of the system is still increasing, which can be attributed to light‐time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682×10−7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present results of photometric observations of the young eclipsing system KH 15D made during two observational seasons, 2002–2004. A comparison of our data with the earlier results of Hamilton et al. and Herbst et al. reveals the existence of a multiyear photometric trend in the brightness: over a period of 5 years the brightness of the system in the Ic band decreased by almost 1 stellar magnitude. It is also shown that the systematic variations in the eclipse parameters reported by Herbst et al. continue to the present. The shape of the light curve has not changed significantly and, as before, it is characterized by a slight brightening in the central portion of the eclipses. These results are discussed in the context of current models for KH 15D.Translated from Astrofizika, Vol. 48, No. 1, pp. 5–14 (February 2005).  相似文献   

9.
10.
A period study of the young binary AR Aur based on the extensive series of published photoelectric/ccd minima times indicates the cyclic (OC) variation for the system. This continuous oscillatory variation covers almost three cycles, about 6000 orbital periods, by the present observational data. It can be attributed to the light‐time effect due to a third body with a period of 23.68 ± 0.17 years in the system. The analysis yields a light‐time semi‐amplitude of 0.0084 ± 0.0002 day and an orbital eccentricity of 0.20 ± 0.04. Adopting the total mass of AR Aur, the mass of the third body assumed in the co‐planar orbit with the binary is M3 = 0.54 ± 0.03 M and the semimajor axis of its orbit is a3 = 13.0 + 0.2 AU. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
New light curves and available times of minima of a β Lyr system EG Cep were analysed to deduce more information on the nature of the system. The main U‐shaped (OC) variation was interpreted in terms of the mass transfer and mass loss in the system. The same variation was also considered as a part of a sinusoidal variation and thus interpreted in terms of a light‐time effect due to an unseen component in the system. New B and V light curves were analyzed with different fitting procedures, and there is general agreement that both stars must be very close to each other and to stability limits. A model that fits all the data well has a near main sequence primary and a secondary star that is overflowing matter towards it. This secondary is also reasonably close to main sequence conditions. The configuration thus appears to be a (relatively uncommon) ‘Case A’ type evolving Algol and raises interesting questions about such interactive evolution and potentially useful tests of theory. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
Orbital period variations of two neglected Algol type binaries, CC Her and XZ Aql, are studied based on all available times of minima. In the case of CC Her, it is found that the OC curve displays a tilted sinusoidal variation with an eccentricity of 0.54 ± 0.03 and a period of 52.4 ± 0.4 yr, which can be explained by the light‐time effect due to the presence of an unseen component. The course of the orbital period change in XZ Aql appears less reliable but its OC curve can be represented by a periodic variation with a period of 36.7 ± 0.6 yr superimposed on an upward parabola. The parabolic variation indicates a secular period increase with a rate of dP /dt = 7.1 s per century. The corresponding conservative mass transfer from less massive component to the more massive one is about 3.26 × 10–7 M yr–1. It is interesting to see that the OC variation of CC Her displays no evidence (as upward parabola) on the mass transfer characteristic for Algols. The periodic change of the orbital period of XZ Aql, like CC Her, may be caused by the presence of the thirdbody. The lower limits of the masses of the hypothetical unseen components for CC Her and XZ Aql are found to be 2.69 M and 0.47 M, respectively. The third body of CC Her should be detectable not only spectroscopically but also photoelectrically, if it exists. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present an analysis of BV R light curves of an eclipsing binary CK Bootis, a system with a very small mass ratio. The light curves appear to exhibit a typical O'Connell effect. The light curves are analyzed by means of the latest version of the WD program. The asymmetry of the light curves is explained by a cool star spot model. The simultaneous BV R synthetic light curve analysis gives a tiny mass ratio of 0.12, an extremely large fill‐out factor of 0.65, and a very small difference between the component temperatures of 90 K. The absolute parameters of the system were also derived by combining the photometric solutions with the radial velocity data. The mass of the secondary is very low (0.15 M) and it continues losing mass. Thirty seven new times of minimum are reported. It is found that the orbital period of the system has a quasi periodic variation, superimposed on a period increase. The long‐term period increase rate is deduced to be dP/dt = 3.54x10–7 d yr–1, which can be interpreted as being due to mass transfer from the less massive star to the more massive component. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
We present a long-term time-resolved photometry of the short-period eclipsing binary IU Per. It confirms the intrinsic δ Scuti-like pulsation of the system reported by Kim et al.. With the obtained data, an orbital period study and an eclipsing light curve synthesis based on the Wilson-Devinney method were carried out. The photometric so- lution reveals a semi-detached configuration with the less-massive component filling its own Roche-lobe. By subtracting the eclipsing light changes from the data, we obtained the pure pulsating light curve of the mass-accreting primary component. A Fourier anal- ysis reveals four pulsation modes with confidence larger than 99%. A mode identification based on the results of the photometric solution was made. It suggests that the star may be in radial pulsation with a fundamental period of about 0.0628 d. A brief discussion concerning the evolutionary status and the pulsation nature is finally given.  相似文献   

17.
Orbital period variations of the Algol-type eclipsing binary, VW Hydrae, are analyzed based on one newly determined eclipse time and the other times of light minima collected from the literature. It is discovered that the orbital period shows a continuous increase at a rate of dP/dt = +6.34×10-7 d yr-1 while it undergoes a cyclic change with an amplitude of 0.0639 d and a period of 51.5 yr. After the long-term period increase and the large-amphtude period oscillation were subtracted from the O-C curve, the residuals of the photoelectric and CCD data indicate a small-amplitude cyclic variation with a period of 8.75 yr and a small amplitude of 0.0048d. The continuous period increase indicates a conservative mass transfer at a rate of dM2/dt = 7.89×10-8 M⊙ yr-1 from the secondary to the primary. The period increase may be caused by a combination of the mass transfer from the secondary to the primary and the angular momentum transfer from the binary system to the circumbinary disk. The two cyclic period oscillations can be explained by light-travel time effects via the presence of additional bodies. The small-amplitude periodic change indicates the existence of a less massive component with mass M3 > 0.53 M⊙, while the large-amplitude one is caused by the presence of a more massive component with mass M4 > 2.84 M⊙. The ultraviolet source in the system reported by Kviz & Rufener (1987) may be one of the additional components, and it is possible that the more massive one may be an unseen neutron star or black hole. The rapid period increase and the possibility of the presence of two additional components in the binary make it a very interesting system to study. New photometric and high-resolution spectroscopic observations and a detailed investigation of those data are required in the future.  相似文献   

18.
The white dwarf in the eclipsing binary system V471 Tau is viewed through the atmosphere of the active K star prior to ingress and after egress. In the far UV the surface brightness of the hot white dwarf far outshines the K star emission. We can use this to probe the structure of the extended K star atmosphere along one line of sight, in absorption, on spatial scales of the radius of the white dwarf (10,000 km). The time series of HST/STIS spectra which show a hot (>250,000 K) extended (>1 K star radius) atmosphere around the K star. We see discrete structures in the velocity‐resolved spectra, on spatial scales of less than 100,000 km. The mean velocity is that expected of gas in co‐rotation with the K star, but the discrete velocity structures have excursions of up to 70 km/s from the mean. The mean temperature seems to increase with height above the K star photosphere. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present new CCD photometry of the solar-type contact binary IU Cnc, which was observed from November 2017 to March 2018 with three small telescopes in China. BV light curves imply that IU Cnc is a W-type contact binary with total eclipses. The photometric solution indicates that the mass ratio and fill-out factor are q = 4.104 ± 0.004 and f = 30.2%± 0.3%, respectively. From all available light minimum times, the orbital period may increase at a rate of dP/dt =+6.93(4)× 10^-7 d yr^-1, which may result from mass transfer from the secondary component to the primary one. With mass transferring,IU Cnc may evolve from a contact configuration into a semi-detached configuration.  相似文献   

20.
We present the results of our investigation of the geometrical and physical parameters of the W UMa‐type binary V404 Peg from analysis of CCD (BVRI) light curves and radial velocity data. The photometric data were obtained during 2010 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously by using the well‐known Wilson‐Devinney (2007 revision) code to obtain absolute and geometrical parameters. Our solution indicates that V404 Peg is an A‐type overcontact binary with a mass ratio of q = 0.243 and an overcontact degree of f = 32.1 %. Combining our light curves with the radial velocity curves from Maciejewski & Ligeza (2004), we determined the absolute parameters of this system as follows: a = 2.672 R, M1 = 1.175 M, M2 = 0.286 M, R1 = 1.346 R, and R2 = 0.710 R. Finally, we discuss the evolutionary condition of the system (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号