首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Abstract— Ar‐rich noble gases, the so‐called “subsolar” noble gases, are a major component of heavy primordial noble gases in unequilibrated ordinary chondrites and some classes of anhydrous carbonaceous chondrites, whereas they are almost absent in hydrous carbonaceous chondrites that suffered extensive aqueous alteration. To understand the effects of aqueous alteration on the abundance of Ar‐rich noble gases, we performed an aqueous alteration experiments on the Ningqiang type 3 carbonaceous chondrite that consists entirely of anhydrous minerals and contains Ar‐rich noble gases. Powdered samples and deionized neutral water were kept at 200 °C for 10 and 20 days, respectively. Mineralogical analyses show that, during the 10‐day alteration, serpentine and hematite formed at the expense of olivine, low‐Ca pyroxene, and sulfide. Noble gas analyses show that the 10‐day alteration of natural Ningqiang removed 79% of the primordial 36Ar, 68% of the 84Kr, and 60% of the 132Xe, but only 45% of the 4He and 53% of the primordial 20Ne. Calculated elemental ratios of the noble gases removed during the 10‐day alteration are in the range of those of Ar‐rich noble gases. These results indicate that Ar‐rich noble gases are located in materials that are very susceptible to aqueous alteration. In contrast, heavy primordial noble gases remaining in the altered samples are close to Q gas in elemental and isotope compositions. This indicates that phase Q is much more resistant to aqueous alteration than the host phases of Ar‐rich noble gases. In the 20‐day sample, the mineralogical and noble gas signatures are basically similar to those of the 10‐day sample, indicating that the loss of Ar‐rich noble gases was completed within the 10‐day alteration. Our results suggest that almost all of the Ar‐rich noble gases were lost from primitive asteroids during early, low‐temperature aqueous alteration.  相似文献   

2.
Abstract— The HF/HCI‐resistant residues of the chondrites CM2 Cold Bokkeveld, CV3 (ox.) Grosnaja, CO3.4 Lancé, CO3.7 Isna, LL3.4 Chainpur, and H3.7 Dimmitt have been measured by closed‐system stepped etching (CSSE) in order to better characterise the noble gases in “phase Q”, a major carrier of primordial noble gases. All isotopic ratios in phase Q of the different meteorites are quite uniform, except for (20Ne/22Ne)Q. As already suggested by precise earlier measurements (Schelhaas et al., 1990; Wieler et al., 1991, 1992), (20Ne/22Ne)Q is the least uniform isotopic ratio of the Q noble gases. The data cluster ~10.1 for Cold Bokkeveld and Lancé and 10.7 for Chainpur, Grosnaja, and Dimmitt, respectively. No correlation of (20Ne/22Ne)Q with the classification or the alteration history of the meteorites has been found. The Ar, Kr, and Xe isotopic ratios for all six samples are identical within their uncertainties and similar to earlier Q determinations as well as to Ar‐Xe in ureilites. Thus, an unknown process probably accounts for the alteration of the originally incorporated Ne‐Q. The noble gas elemental compositions provide evidence that Q consists of at least two carbonaceous carrier phases “Q1” and “Q2” with slightly distinct chemical properties. Ratios (Ar/Xe)Q and (Kr/Xe)Q reflect both thermal metamorphism and aqueous alteration. These parent‐body processes have led to larger depletions of Ar and Kr relative to Xe. In contrast, meteorites that suffered severe aqueous alteration, such as the CM chondrites, do not show depletions of He and Ne relative to Ar but rather the highest (He/Ar)Q and (Ne/Ar)Q ratios. This suggests that Q1 is less susceptible to aqueous alteration than Q2. Both subphases may well have incorporated noble gases from the same reservoir, as indicated by the nearly constant, though very large, depletion of the lighter noble gases relative to solar abundances. However, the elemental ratios show that Q1 and Q2 must have acquired (or lost) noble gases in slightly different element proportions. Cold Bokkeveld suggests that Q1 may be related to presolar graphite. Phases Q1 and Q2 might be related to the subphases that have been suggested by Gros and Anders (1977). The distribution of the 20Ne/22Ne ratios cannot be attributed to the carriers Q1 and Q2. The residues of Chainpur and Cold Bokkeveld contain significant amounts of Ne‐E(L), and the data confirm the suggestion of Huss (1997) that the 22Ne‐E(L) content, and thus the presolar graphite abundances, are correlated with the metamorphic history of the meteorites.  相似文献   

3.
Abstract— Chondrules are generally believed to have lost most or all of their trapped noble gases during their formation. We tested this assumption by measuring He, Ne, and Ar in chondrules of the carbonaceous chondrites Allende (CV3), Leoville (CV3), Renazzo (CR2), and the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1). Additionally, metalsulfide‐rich chondrule coatings were measured that probably formed from chondrule metal. Low primordial 20Ne concentrations are present in some chondrules, while even most of them contain small amounts of primordial 36Ar. Our preferred interpretation is that‐in contrast to CAIs‐the heating of the chondrule precursor during chondrule formation was not intense enough to expel primordial noble gases quantitatively. Those chondrules containing both primordial 20Ne and 36Ar show low presolar‐diamond‐like 36Ar/20Ne ratios. In contrast, the metal‐sulfide‐rich coatings generally show higher gas concentrations and Q‐like 36Ar/20Ne ratios. We propose that during metalsilicate fractionation in the course of chondrule formation, the Ar‐carrying phase Q became enriched in the metal‐sulfide‐rich chondrule coatings. In the silicate chondrule interior, only the most stable Ne‐carrying presolar diamonds survived the melting event leading to the low observed 36Ar/20Ne ratios. The chondrules studied here do not show evidence for substantial amounts of fractionated solar‐type noble gases from a strong solar wind irradiation of the chondrule precursor material as postulated by others for the chondrules of an enstatite chondrite.  相似文献   

4.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.  相似文献   

5.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   

6.
Abstract— We analyzed the noble gas isotopes in the Fe‐Ni metal and inclusions of the Saint‐Aubin iron meteorite, utilizing the stepwise heating technique to separate the various components of noble gases. The light noble gases in all samples are mostly cosmogenic, with some admixture from the terrestrial atmosphere. Total abundances of noble gases in metal are one of the lowest found so far in iron meteorites and the 4He/21Ne ratio is as high as 503, suggesting that the Saint‐Aubin iron meteorite was derived from a very large meteoroid in space. The exposure ages obtained from cosmogenic 3He were 9–16 Ma. Saint‐Aubin is very peculiar because it contains very large chromite crystals, which—like the metal—contain only cosmogenic and atmospheric noble gases. The noble gases in all the samples do not reveal any primordial components. The only exception is the 1000 °C fraction of schreibersite which contained about 5% of the Xe‐HL component. The Xe‐Q and the El Taco Xe components were not found and only the Xe‐HL is present in this fraction. Some presolar diamond, the only carrier for the HL component known today, must have been available during growth of the schreibersite. However, it is also possible that this excess is due to the addition of cosmogenic and fission components. In this case, all the primordial components are masked (or lost) by the later events such as cosmic‐ray irradiation, heating, and radioactive decay.  相似文献   

7.
Abstract— A series of experiments carried out by Koscheev et al. (1998, 2001, 2004, 2005) showed that the bimodal release of heavy noble gases from meteoritic nanodiamonds can be reproduced by a single implanted component. This paper investigates the implications of this result for interpreting the noble gas compositions of meteoritic nanodiamonds and for their origin and history. If the bimodal release exhibited by meteorite diamonds reflects release of the P3 noble gas component, then the composition inferred for the pure Xe‐HL end member changes slightly, the excesses of heavy krypton isotopes that define Kr‐H become less extreme, evidence appears for a Kr‐L component, and the nucleosynthetic contribution to argon becomes much smaller. After correction for cosmogenic neon inherited from the host meteorites, the neon in presolar diamonds shows evidence for pre‐irradiation, perhaps in interstellar space, and a nucleosynthetic component perhaps consistent with a supernova source. After a similar correction, helium also shows evidence for presolar irradiation and/or a nucleosynthetic component. For the case of presolar irradiation, due to the small size of the diamonds, a large entity must have been irradiated and recoiling product nuclei collected by the nanodiamonds. The high 3He/21Ne ratio (?43) calls for a target with a (C + O)/heavier‐element ratio higher than in chondritic abundances. Bulk gas + dust (cosmic abundances) meet this criteria, as would solids enriched in carbonaceous material. The long recoil range of cosmogenic 3He argues against a specific phase. The excess 3He in presolar diamonds may represent trapped cosmic rays rather than cosmogenic 3He produced in the vicinity of the diamond crystals.  相似文献   

8.
Abstract— We have determined the recoil losses from silicon carbide (SiC) grain‐size fractions of spallation Ne produced by irradiation with 1.6 GeV protons. During the irradiation, the SiC grains were dispersed in paraffin wax in order to avoid reimplantation into neighboring grains. Analysis for spallogenic 21Ne of grain‐size separates in the size range 0.3 to 6 μm and comparison with the 22Na activity of the SiC + paraffin mixture indicates an effective recoil range of 2–3 μm with no apparent effect from acid treatments, which are routinely used in the isolation of meteoritic SiC grains. Our results indicate that the majority of presolar SiC grains in primitive meteorites, which are micrometer‐sized, will have lost essentially all spallogenic Ne produced by cosmic‐ray interaction in the interstellar medium. This argues against the validity of previously published presolar ages of Murchison SiC (~10 to ~130 Ma, increasing with grain size; Lewis et al., 1994), where recoil losses had been based on calculated recoil energies. It is argued that the observed variations in meteoritic SiC grain‐size fractions of 21Ne/22Ne ratios are more likely due to the effects of nucleosynthesis in the He‐burning shell of the parent AGB stars which imposes new boundary conditions on nuclear parameters and stellar models. It is suggested that spallation‐Xe produced on the abundant Ba and REE in presolar SiC, rather than spallogenic Ne, may be a promising approach to the presolar age problem. There is a hint in the currently available Xe data (Lewis et al., 1994) that the large (>1 μm) grains may be younger than the smaller (<1 μm) grains. The retention of spallogenic 21Ne produced by the bombardment of SiC grains of different grain sizes with 1.6 GeV protons, avoiding reimplantation into neighboring grains by dispersing the SiC grains in paraffin wax, has been derived from a comparison of mass spectrometrically determined 21Ne, retained in the grains, with the 22Na activity of the grains‐plus‐paraffin mixture. Compared to estimates of retention used in previous attempts to determine presolar ages for SiC (Tang and Anders, 1988b; Lewis et al., 1990, 1994), the results indicate significantly lower values. They do, however, agree with retention as expected from previous measurements of recoil ranges in similar systems (Nyquist et al., 1973; Steinberg and Winsberg, 1974). The prime reason for the discrepancy must lie in the energy of the recoiling nuclei entering in the calculation of retention by Tang and Anders (1988b), which is based on considerations by Ray and Völk (1983). Based on the results, it appears questionable that spallation contributes significantly to the observed variations of 21Ne/22Ne ratios among various SiC grain‐size separates (Lewis et al., 1994). We rather suggest that the variations, just as it has been observed for Kr and Ba already (Lewis et al., 1994; Prombo et al., 1993), have a nucleosynthetic origin. Confirmation needs input of improved nuclear data and stellar models into new network calculations of the nucleosynthesis in AGB stars of elements in the Ne region. Finally we argue that, to determine presolar system irradiation effects, spallation Xe is more favorable than is Ne, primarily because of smaller recoil losses for Xe. Although preliminary estimates hint at the possibility that the larger (>1 μm) grains are younger than the smaller (<1 μm) ones, the major uncertainty for a quantitative evaluation lies in the exact composition of the Xe‐N component thought to originate from the envelope of the SiC grains' parent stars.  相似文献   

9.
Our detailed mineralogical, elemental, and isotopic study of the Miller Range (MIL) 07687 meteorite showed that, although this meteorite has affinities to CO chondrites, it also exhibits sufficient differences to warrant classification as an ungrouped carbonaceous chondrite. The most notable feature of MIL 07687 is the presence of two distinct matrix lithologies that result from highly localized aqueous alteration. One of these lithologies is Fe‐rich and exhibits evidence for interaction with water, including the presence of fibrous (dendritic) ferrihydrite. The other lithology, which is Fe‐poor, appears to represent relatively unaltered protolith material. MIL 07687 has presolar grain abundances consistent with those observed in other modestly altered carbonaceous chondrites: the overall abundance of O‐rich presolar grains is 137 ± 3 ppm and the overall abundance of SiC grains is 71 ± 11 ppm. However, there is a large difference in the observed O‐rich and SiC grain number densities between altered and unaltered areas, reflecting partial destruction of presolar grains (both O‐ and C‐rich grains) due to the aqueous alteration experienced by MIL 07687 under highly oxidizing conditions. Detailed coordinated NanoSIMS‐TEM analysis of a large hotspot composed of an isotopically normal core surrounded by a rim composed of 17O‐rich grains is consistent with either original condensation of the core and surrounding grains in the same parent AGB star, or with grain accretion in the ISM or solar nebula.  相似文献   

10.
Abstract— Calcium‐aluminum‐rich inclusions (CAIs) were among the first solids in the solar system and were, similar to chondrules, created at very high temperatures. While in chondrules, trapped noble gases have recently been detected, the presence of trapped gases in CAIs is unclear but could have important implications for CAI formation and for early solar system evolution in general. To reassess this question, He, Ne, and Ar isotopes were measured in small, carefully separated and, thus, uncontaminated samples of CAIs from the CV3 chondrites Allende, Axtell, and Efremovka. The 20Ne/22Ne ratios of all CAIs studied here are <0.9, indicating the absence of trapped Ne as, e.g., Ne‐HL, Ne‐Q, or solar wind Ne. The 21Ne/22Ne ratios range from 0.86 to 0.72, with fine‐grained, more altered CAIs usually showing lower values than coarse‐grained, less altered CAIs. This is attributed to variable amounts of cosmogenic Ne produced from Na‐rich alteration phases rather than to the presence of Ne‐G or Ne‐R (essentially pure 22Ne) in the samples. Our interpretation is supported by model calculations of the isotopic composition of cosmogenic Ne in minerals common in CAIs. The 36Ar/38Ar ratios are between 0.7 and 4.8, with fine‐grained CAIs within one meteorite showing higher ratios than the coarse‐grained ones. This agrees with higher concentrations of cosmogenic 36Ar produced by neutron capture on 35Cl with subsequent β?‐decay in finer‐grained, more altered, and thus, more Cl‐rich CAIs than in coarser‐grained, less altered ones. Although our data do not strictly contradict the presence of small amounts of Ne‐G, Ne‐R, or trapped Ar in the CAIs, our noble gas signatures are most simply explained by cosmogenic production, mainly from Na‐, Ca‐, and Cl‐rich minerals.  相似文献   

11.
Abstract– We report Mg‐Al and Ca‐Ti isotopic data for meteoritic nanodiamonds separated from the Allende CV3 and Murchison CM2 meteorites. The goal of this study was to search for excesses in 26Mg and 44Ca, which can be attributed to the in situ decay of radioactive and now extinct 26Al and 44Ti, respectively. Previous work on presolar SiC and graphite had shown that 26Al/27Al and 44Ti/48Ti ratios in presolar grains can be used to discriminate between different types of stellar sources. Aluminum and Ti concentrations are low in the meteoritic nanodiamonds of this study. Murchison nanodiamonds have higher Al and Ti concentrations than the Allende nanodiamonds. This can be attributed to contamination and the presence of presolar SiC in the Murchison nanodiamond samples. 26Mg/24Mg and 44Ca/40Ca ratios are close to normal in Allende nanodiamonds with upper limits on the initial 26Al/27Al and 44Ti/48Ti ratios of approximately 1 × 10?3. These ratios are factors of 10–1000 and, respectively, 1–1000 lower than those of presolar SiC and graphite grains from supernovae. The 26Al/27Al and 44Ti/48Ti data for nanodiamonds are compatible with an asymptotic giant branch star or solar system origin, but not with a supernova origin of a major fraction of meteoritic nanodiamonds. The latter possibility cannot be excluded, though, as the diamond separates may contain significant amounts of contaminating Al and Ti, which would lower the inferred 26Al/27Al and 44Ti/48Ti ratios considerably.  相似文献   

12.
We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. 2010 ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.  相似文献   

13.
The Sutter's Mill (SM) carbonaceous chondrite is a regolith breccia, composed predominantly of CM2 clasts with varying degrees of aqueous alteration and thermal metamorphism. An investigation of presolar grains in four Sutter's Mill sections, SM43, SM51, SM2‐4, and SM18, was carried out using NanoSIMS ion mapping technique. A total of 37 C‐anomalous grains and one O‐anomalous grain have been identified, indicating an abundance of 63 ppm for presolar C‐anomalous grains and 2 ppm for presolar oxides. Thirty‐one silicon carbide (SiC), five carbonaceous grains, and one Al‐oxide (Al2O3) were confirmed based on their elemental compositions determined by C‐N‐Si and O‐Si‐Mg‐Al isotopic measurements. The overall abundance of SiC grains in Sutter's Mill (55 ppm) is consistent with those in other CM chondrites. The absence of presolar silicates in Sutter's Mill suggests that they were destroyed by aqueous alteration on the parent asteroid. Furthermore, SM2‐4 shows heterogeneous distributions of presolar SiC grains (12–54 ppm) in different matrix areas, indicating that the fine‐grained matrix clasts come from different sources, with various thermal histories, in the solar nebula.  相似文献   

14.
Renazzo‐type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shi?r 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)‐produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He‐21Ne cosmic ray exposure (CRE) age for Shi?r 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10?8 cm3STP/g) 3.99–7.76 and 0.94–1.71, respectively. Assuming present‐day GCR flux density, the excesses translate into average precompaction 3He‐21Ne CRE ages of 3.1–27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shi?r 033 parent body in a region of the disk transparent to GCRs.  相似文献   

15.
We investigated the inventory of presolar silicate, oxide, and silicon carbide (SiC) grains of fine‐grained chondrule rims in six Mighei‐type (CM) carbonaceous chondrites (Banten, Jbilet Winselwan, Maribo, Murchison, Murray and Yamato 791198), and the CM‐related carbonaceous chondrite Sutter's Mill. Sixteen O‐anomalous grains (nine silicates, six oxides) were detected, corresponding to a combined matrix‐normalized abundance of ~18 ppm, together with 21 presolar SiC grains (~42 ppm). Twelve of the O‐rich grains are enriched in 17O, and could originate from low‐mass asymptotic giant branch stars. One grain is enriched in 17O and significantly depleted in 18O, indicative of additional cool bottom processing or hot bottom burning in its stellar parent, and three grains are of likely core‐collapse supernova origin showing enhanced 18O/16O ratios relative to the solar system ratio. We find a presolar silicate/oxide ratio of 1.5, significantly lower than the ratios typically observed for chondritic meteorites. This may indicate a higher degree of aqueous alteration in the studied meteorites, or hint at a heterogeneous distribution of presolar silicates and oxides in the solar nebula. Nevertheless, the low O‐anomalous grain abundance is consistent with aqueous alteration occurring in the protosolar nebula and/or on the respective parent bodies. Six O‐rich presolar grains were studied by Auger Electron Spectroscopy, revealing two Fe‐rich silicates, one forsterite‐like Mg‐rich silicate, two Al‐oxides with spinel‐like compositions, and one Fe‐(Mg‐)oxide. Scanning electron and transmission electron microscopic investigation of a relatively large silicate grain (490 nm × 735 nm) revealed that it was crystalline åkermanite (Ca2Mg[Si2O7]) or a an åkermanite‐diopside (MgCaSi2O6) intergrowth.  相似文献   

16.
Abstract— From November 1998 to January 1999, the 39th Japanese Antarctic Research Expedition (JARE) conducted a large‐scale micrometeorite collection at 3 areas in the meteorite ice field around the Yamato Mountains, Antarctica. The Antarctic micrometeorites (AMMs) collected were ancient cosmic dust particles. This is in contrast with the Dome Fuji AMMs, which were collected previously from fresh snows in 1996 and 1997 and which represent modern micrometeorites. To determine the noble gas concentrations and isotopic compositions of individual AMMs, noble gas analyses were carried out using laser‐gas extraction for 35 unmelted Yamato Mountains AMMs and 3 cosmic spherules. X‐ray diffraction analyses were performed on 13 AMMs before the noble gas measurement and mineral compositions were determined. AMMs are classified into 4 main mineralogical groups, defined from the heating they suffered during atmospheric entry. Heating temperatures of AMMs, inferred from their mineral compositions, are correlated with 4He concentrations and reflect the effect of degassing during atmospheric entry. Jarosite, an aqueous alteration product, is detected for 4 AMMs, indicating the aqueous alteration during long‐time storage in Antarctic ice. Jarosite‐bearing AMMs have relatively low concentrations of 4He, which is suggestive of loss during the alteration. High 3He/4He ratios are detected for AMMs with high 20Ne/4He ratios, showing both cosmogenic 3He and preferential He loss. SEP (solar energetic particles)‐He and Ne, rather than the solar wind (SW), were dominant in AMMs, presumably showing a preferential removal of the more shallowly implanted SW by atmospheric entry heating. The mean 20Ne/22Ne ratio is 11.27 ± 0.35, which is close to the SEP value of 11.2. Cosmogenic 21Ne is not detected in any of the particles, which is probably due to the short cosmic ray exposure ages. Ar isotopic compositions are explained by 3‐component mixing of air, Q, and SEP‐Ar. Ar isotopic compositions can not be explained without significant contributions of Q‐Ar. SEP‐Ne contributed more than 99% of the total Ne. As for 36Ar and 38Ar, the abundance of the Q component is comparable to that of the SEP component. 84Kr and 132Xe are dominated by the primordial component, and solar‐derived Xe is almost negligible.  相似文献   

17.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

18.
Atom‐probe tomography (APT) is currently the only analytical technique that, due to its spatial resolution and detection efficiency, has the potential to measure the carbon isotope ratios of individual nanodiamonds. We describe three different sample preparation protocols that we developed for the APT analysis of meteoritic nanodiamonds at sub‐nm resolution and present carbon isotope peak ratios of meteoritic and synthetic nanodiamonds. The results demonstrate an instrumental bias associated with APT that needs to be quantified and corrected to obtain accurate isotope ratios. After this correction is applied, this technique should allow determination of the distribution of 12C/13C ratios in individual diamond grains, solving the decades‐old question of the origin of meteoritic nanodiamonds: what fraction, if any, formed in the solar system and in presolar environments? Furthermore, APT could help us identify the stellar sources of any presolar nanodiamonds that are detected.  相似文献   

19.
We report a correlated NanoSIMS‐transmission electron microscopy study of the ungrouped carbonaceous chondrite Northwest Africa (NWA) 5958. We identified 10 presolar SiC grains, 2 likely presolar graphite grains, and 20 presolar silicate and/or oxide grains in NWA 5958. We suggest a slight modification of the commonly used classification system for presolar oxides and silicates that better reflects the grains’ likely stellar origins. The matrix‐normalized presolar SiC abundance in NWA 5958 is ppm (2σ) similar to that seen in many classes of unmetamorphosed chondrites. In contrast, the matrix‐normalized abundance of presolar O‐rich phases (silicates and oxides) is ppm (2σ), much lower than seen in interplanetary dust particles and the least‐altered CR, CO, and ungrouped C chondrites, but close to that reported for CM chondrites. NanoSIMS mapping also revealed an unusual 13C‐enriched (δ13C≈100–200‰) carbonaceous rim surrounding a 1.4 μm diameter phyllosilicate grain. Transmission electron microscopy (TEM) analysis of two presolar grains with a likely origin in asymptotic giant branch stars identified one as enstatite and one as Al‐Mg spinel with minor Cr. The enstatite grain amorphized rapidly under the electron beam, suggesting partial hydration. TEM data of NWA 5958 matrix confirm that it has experienced aqueous alteration and support the suggestion of Jacquet et al. (34) that this meteorite has affinities to CM2 chondrites.  相似文献   

20.
We analyzed noble gases in an oxidized residue prepared from a HF‐HCl residue of the Saratov L4 chondrite. The Ar, Kr, and Xe concentrations in the oxidized residue are two orders of magnitude lower than those in the HF‐HCl residue, and they are close to concentrations in the bulk. The He and Ne concentrations are similar in the three samples. The Ne isotopic ratios are almost purely cosmogenic, indicating absence of presolar diamonds (the carrier of the HL component). Thus, Saratov contains phase Q without presolar diamond. A study of the Raman spectroscopic parameters for the HF‐HCl residue and the oxidized residue shows large changes due to oxidation. The directions of these changes are the same as observed in Allende, except oxidation increased the ID/IG (intensity ratio of the D band to the G band) in Saratov but decreased in Allende. This difference may be attributed to the different crystalline stages of carbon in both meteorites. The shifts in the Raman parameters to a discrete and/or more expanded region suggest that (1) oxidation changes the crystalline condition of graphitic carbon, (2) phase Q is not a dissolved site, and (3) the release of Q‐gas is simply related to the rearrangement of the carbon structure during oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号