首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
台风暴雨型滑坡降雨阈值曲线研究以福建地区为例   总被引:3,自引:0,他引:3  
台风暴雨型滑坡具有群发性、规模小、爆发性强的特点,容易造成严重的人员伤亡和巨大的财产损失。本文应用极值理论分析,以极端降雨重现期的极大值作为标准并计算有效的降雨区间,通过统计分析,确定触发暴雨型滑坡的降雨阈值曲线。应用模型对福建地区台风暴雨型滑坡进行了分析,福建省3个灾害高发区为:南平三明地区、泉州地区和宁德地区。南平三明地区降雨阈值较高,但发生的滑坡数量较多,主要以3d的降雨为主;泉州地区小于3d的连续降雨和大于8d的连续降雨是触发该地滑坡的主要降雨区间;宁德地区对短期降雨较为敏感,滑坡主要由1d的降雨引起。比较分析研究表明,台风地区触发滑坡的降雨阈值要高于非台风地区。降雨型滑坡阈值主要受气候,地质和土壤厚度影响,气候因素为主控因素。  相似文献   

2.
Heavy rain fell on the Shikoku area during Typhoon Namtheun, setting a new record for daily rainfall in Japan of 1317 mm. The rain which peaked at 120 mm/h, triggered numerous landslides in the Nakagawa basin of Tokushima Prefecture, Japan on August 1, 2004. Among them, four large, rapid, long-runout landslides were triggered at Kisawa village. Two people were caught in one landslide and disappeared without trace, and there was much property damage. Ring-shear tests on samples from the landslides showed that shear resistance was greatly reduced by high pore-water pressure after shear failure was triggered by the increase in ground-water level during the rain.  相似文献   

3.
台风暴雨是我国东南丘陵山地滑坡的主要诱发因素,揭示台风路径与滑坡发生的相关关系对东南丘陵山地台风暴雨型土质滑坡监测预警具有重要的理论及实际意义。本文基于2015—2019年直接过境福建省或间接对福建省造成影响的台风数据以及与这些台风事件发生期间的降雨量数据和台风暴雨滑坡数据,运用ArcGIS软件中的克里金插值法将台风路径、降雨量数据及台风暴雨滑坡数据进行耦合。再运用Logistic回归方法,通过SPSS软件得到泉州市基于台风路径追踪的滑坡发生概率模型。并运用克里金插值法和Logistic回归方法,以台风杜鹃期间的滑坡为实例对所得模型进行验证,其对实际雨量站测得降雨数据引发滑坡与否的判对概率为77%,对实际发生滑坡的判对概率为100%,依据实际降雨量计算数据,其误报率为21%,但实际滑坡发生的误报率为0,符合安全性。预报效果较为满意,因此模型可作为在台风经过泉州市时的台风暴雨型滑坡发生概率的预测。  相似文献   

4.
Many large landslides in the crystalline schist region of Shikoku Island, Japan, are susceptible to intense rainfall. Through the use of on-site monitoring systems, the activity of landslides and their meteorological triggers can be assessed. Continuous high-intensity rainfall was found to play a key role in provoking landslide movement. This paper investigates the influence of intense rainfall on the activity of crystalline schist landslides by examining rainfall and displacement of four typical landslides. By defining and calculating the effective rainfall and the relative landslide displacement, the relationship between intense rainfall and rainfall-induced landslide movement was analysed. Results indicate that the intense rainfall-induced landslide movement can be correlated with the effective rainfall. From these results, two rainfall thresholds were identified for the landslide risk management of Shikoku Island.  相似文献   

5.
The effect of antecedent rainfall on slope stability   总被引:10,自引:0,他引:10  
A case study is presented in order to identify the effect of antecedent rainfall on slope stability for Singapore. A storm in February 1995 (during which 95 mm of rain fell in 2 h) caused more than twenty shallow landslides on the Nanyang Technological University Campus. Details of the location, size and morphology of the landslides are presented. The antecedent rainfall during the five days preceding the event was significant in causing these landslides since other rainfall events of similar magnitude (but with less antecedent rainfall) did not cause landslides. To further understand the effect of antecedent rainfall, numerical modelling of one of the slope failures is presented. The changes in pore-water pressure due to different rainfall patterns were simulated and these were used to calculate the changes in factor of safety of the slope. The results demonstrate that antecedent rainfall does play an important role in slope stability.  相似文献   

6.
On Shikoku Island, which is one of the four main islands of Japan, a large number of large-scale crystalline schist landslides have been revealed and are being monitored by an observation system. Seasonal heavy rainfall is the most active meteorological factor that can threaten the stability of this kind of site-specific landslide. In this paper, on the basis of the study of the rainfall-related behavior of a typical crystalline schist landslide, the Zentoku landslide, by analyzing the precisely and continuously observed piezometric and movement data, a method was developed to quantitatively assess the effect of heavy rainfall on a large-scale landslide. The results indicated that heavy rainfall-induced landslide displacement shows good correlation with the variation of groundwater levels. Variations of groundwater level have been simulated with the use of a tank model. The simulation using this model permits the change in water levels for future rainfall events to be predicted. By combining the predicted results with the empirical relation between displacements and water levels, rainfall-induced landslide movement during extreme rainfall events can be estimated in advance. The effect of heavy rainfall on sliding behavior can be quantified in terms of the change in displacement. Thus warning information or advisories for the local residents can be provided.  相似文献   

7.
In the Himalaya, people live in widely spread settlements and suffer more from landslides than from any other type of natural disaster. The intense summer monsoons are the main factor in triggering landslides. However, the relations between landslides and slope hydrology have not been a focal topic in Himalayan landslide research. This paper deals with the contributing parameters for the rainfall-triggered landslides which occurred during an extreme monsoon rainfall event on 23 July 2002, in the south-western hills of Kathmandu valley, in the Lesser Himalaya, Nepal. Parameters such as bedrock geology, geomorphology, geotechnical properties of soil, and clay mineralogy are described in this paper. Landslide modeling was performed in SEEP/W and SLOPE/W to understand the relationship of pore water pressure variations in soil layers and to determine the spatial variation of landslide occurrence. Soil characteristics, low angle of internal friction of fines in soil, medium range of soil permeability, presence of clay minerals in soil, bedrock hydrogeology, and human intervention were found to be the main contributing parameters for slope failures in the region.  相似文献   

8.
In Nepal, people live in widely spread settlements in the fragile Himalayan terrains, and suffer more from landslides than from any other type of natural disaster. The small-scale rainfall-triggered landslides in the Lesser Himalaya of Nepal are generally shallow (about 0.5 to 2.5 m) and are triggered by changes in the physical property of soil layers during rainfall. The relation between landslides and slope hydrology has received little attention in Himalayan landslide research. Thus, this paper deals with the probability of slope failure during extreme rainfall events by considering a digital elevation model (DEM)-based hydrological model for soil saturation depth and an infinite slope stability model. Deterministic distributed analysis in a geographic information system (GIS) was carried out to calculate the probability of slope failure. A simple method of error propagation was used to calculate the variance of the safety factors and the probability of failure. When normally distributed failure probability values were checked against existing landslides, it was found that more than 50% of the pixels of existing landslides coincided with a high calculated probability of failure. Although the deterministic distributed analysis has certain drawbacks, as described by previous researchers, this study concluded that the calculated failure probability can be utilised to predict the probability of slope failure in Himalayan terrain during extreme rainfall events.  相似文献   

9.
On October 23, 2004, an earthquake with a moment magnitude of 6.8 occurred in the Chuetsu area of Niigata prefecture in Japan. This earthquake is known as the 2004 Mid-Niigata prefecture earthquake; the event was followed by severe aftershocks and caused many types of landslides such as surficial slides, shallow slides, and deep slides. A large number of landslides occurred in the upland village of Yamakoshi, destroying the entire village; in addition, a huge number of houses collapsed in Kawaguchi town. This study investigates the correlations between each type of landslide and the bedding plane orientation and dip, and other geomorphologic conditions. The landslide occurrence ratio (LOR) is used as an index to determine the correlation between the 2004 Mid-Niigata prefecture earthquake-induced landslides and the slope angle, slope aspect, rock type, and bedding plane orientation and dip. This work also proposes a methodology to determine the geometric alignment between the topography and the orientation of geological bedding planes. The method provides an efficient means of estimating the topography/bedding plane relationship over large areas.  相似文献   

10.
日本四国地区分布有大量具有独特地质条件和活动特征的结晶片岩滑坡。长期的实地观测结果表明,季节性的集中降雨是影响此类滑坡活动的主要因素。文章基于对此类滑坡活动观测资料和降雨资料的综合分析,阐述了结晶片岩滑坡的活动特点以及集中降雨对其的影响作用。通过对有效雨量和滑坡位移等反映降雨影响和滑坡活动状况参数的分析,揭示了集中降雨与滑坡活动之间的关系,并且确定了对该地区滑坡活动产生影响的降雨特征,为此类滑坡灾害的防治与管理提供了依据和评价指标。  相似文献   

11.
This study investigates the transient modeling of regional rainfall-triggered shallow landslides in unsaturated soil using the Richards equation. To model shallow landslides within a distributed regional-scale framework, infinite slope stability analysis coupled with the hydrological model with consideration of the fluctuation of time-dependent pore water pressure and the soil–water characteristic curve proposed by van Genuchten was developed. The validity of the proposed model is established through several test problems by comparing the numerical results with the analytical solutions. A new procedure to set up wide-range shallow landslide analysis and to integrate regional distribution variations for input data such as geology, groundwater level, hydrogeological characteristics, and rainfall intensity and duration was presented. The results obtained demonstrate that the computed distribution of the safety factor is consistent with the distribution of actual landslides. In addition, the fluctuation of pore water pressure in unsaturated soil dominates the stability of landslides during typhoons accompanied by heavy rainfall. The findings observed in this study are a fundamental contribution to environmental effects for landslides in areas with higher occurrence and vulnerability to extreme precipitation.  相似文献   

12.
The 2007 Chuetsu Oki earthquake (MJMA = 6.6) triggered more than one hundred slope failures in the northwest part of Niigata prefecture, Japan. A reconnaissance survey conducted by the authors revealed that although most of the failures were only a few meters deep, they still caused significant damage to roads, railways, and houses. It was also found that a vast number of shallow slides were concentrated along the coastal line of the Japan Sea, while only few, but relatively larger failures occurred in a mountainous part of the study area, which is located in a considerable distance from the earthquake’s epicenter. This paper summarizes the reconnaissance observations, describes the geologic characteristics of the area covered by landslides, provides characterization of major types of the landslides, and examines the causes and mechanisms of typical failures. In addition, this paper seeks to investigate the mechanism of the Ohzumi landslide, the largest slide triggered by the Chuetsu Oki earthquake. For this purpose, a comprehensive analysis that included field investigation and laboratory testing of soils samples was performed. Results of field investigation suggested that the failure plane of the Ohzumi landslide formed in a saturated layer of sandy soil near a boundary with bedrock. Data from undrained cyclic loading triaxial compression tests indicated that the sandy material was highly susceptible to generation of high excess pore-water pressures during earthquake loading. On the basis of the obtained results and the outcome of seismic response and slope stability analyses, the authors posited an explanation on the mechanism of the Ohzumi landslide.  相似文献   

13.
Landslides are a major category of natural disasters, causing loss of lives, livelihoods and property. The critical roles played by triggering (such as extreme rainfall and earthquakes), and intrinsic factors (such as slope steepness, soil properties and lithology) have previously successfully been recognized and quantified using a variety of qualitative, quantitative and hybrid methods in a wide range of study sites. However, available data typically do not allow to investigate the effect that earlier landslides have on intrinsic factors and hence on follow-up landslides. Therefore, existing methods cannot account for the potentially complex susceptibility changes caused by landslide events. In this study, we used a substantially different alternative approach to shed light on the potential effect of earlier landslides using a multi-temporal dataset of landslide occurrence containing 17 time slices. Spatial overlap and the time interval between landslides play key roles in our work. We quantified the degree to which landslides preferentially occur in locations where landslides occurred previously, how long such an effect is noticeable, and how landslides are spatially associated over time. We also investigated whether overlap with previous landslides causes differences in landslide geometric properties. We found that overlap among landslides demonstrates a clear legacy effect (path dependency) that has influence on the landslide affected area. Landslides appear to cause greater susceptibility for follow-up landslides over a period of about 10  years. Follow-up landslides are on average larger and rounder than landslides that do not follow earlier slides. The effect of earlier landslides on follow-up landslides has implications for understanding of the landslides evolution and the assessment of landslide susceptibility.  相似文献   

14.
江西省滑坡与降雨的关系研究   总被引:5,自引:0,他引:5  
对江西全省1973 年~2002 年间1 158个降雨型滑坡,从考虑滑坡所处地层岩性条件和坡向因素的角度,分析了江西省降雨型滑坡发生的概率与降雨的关系。从坡向因素角度分析,江西省有64 %的滑坡发生于阳坡,但降雨对于不同坡向的滑坡影响近乎相同,只是阴坡所需激发雨量和有效临界雨量较阳坡稍大3 %。6 d累计降雨量、14 d有效降雨量(有效降雨系数为0.82)、3 d累计降雨量和9 d累计降雨量分别是变质岩、岩浆岩、碳酸岩和碎屑岩类地层中发育的滑坡所对应的最相关的降雨因子。各岩类地层中发育的滑坡有80 %发生于降雨当日;岩浆岩、变质岩和碎屑岩类滑坡约12 %~14 %滞后于降雨发生,碳酸岩类滑坡有22 %滞后于降雨发生。滞后时间多为1~3 d,其中碳酸岩类滑坡滞后时间相对较短。这与降雨对不同滑体物质成分的渗透性能、岩土体强度弱化程度和速度等有关。  相似文献   

15.
Rain-triggered slope failure of the railway embankment at Malda,India   总被引:2,自引:2,他引:0  
The common slope stability analysis is incapable of accurately forecasting shallow slides where suction pressures play a critical role. This realization is used for elaborate stability analyses which include soil suction to better predict rainfall-induced slides at railway embankment at Malda where three known cases of slope failures and train derailments occurred after heavy rainfall. The relationship between the soil–water content and the matric suction is established for the embankment soil. It is then used in the coupled analyses of seepage and slope stability to estimate performances of the embankment at different intensity and duration of rainfall. The numerical simulations are performed with the FE code Geo-Studio. The numerical results show significant reduction in the factor of safety of the railway embankment with the increase in the intensity and duration of rainfall. The effectiveness of the proposed mitigation measures including placement of 2 m-wide free draining rockfill across the slopes and drilling 5-m-long sheet pile wall at the toe of the embankment is studied numerically. The study confirms that the proposed mitigation measures effectively increase the factor of safety of the embankment and stabilizing it even in case of a heavy rainfall of 25 mm/h over 12 h.  相似文献   

16.
植被在世界各地被广泛用于防止滑坡,但在我国东南沿海的台风季节,植被覆盖较好的地区受台风暴雨诱发常有大量滑坡发生。为了研究台风暴雨条件下植被对滑坡发育的促进作用,通过风洞物理模拟实验研究了风荷载和植被摇曳对滑坡稳定性的影响。结果表明: 台风通过植被对边坡施加的荷载不容忽视,在超强台风条件下(风速≥17 m/s),风荷载可使潜在滑坡体的下滑力增加10%以上; 由于台风的风荷载,植被会通过根部对土壤施加强大的扭矩,导致土壤出现裂缝,这些裂缝为雨水渗透提供了快速通道,土壤的渗透系数会增加10倍以上。因此在东南沿海地区的台风季节,应注意植被、特别是高大乔木对滑坡稳定性的不利影响。  相似文献   

17.
Rainfall-induced landslides frequently occur in humid temperate regions worldwide. Research activity in understanding the mechanism of rainfall-induced landslides has recently focused on the probability of slope failure involving non-homogeneous soil profiles. This paper presents probabilistic analyses to assess the stability of unsaturated soil slope under rainfall. The influence of the spatial variability of shear strength parameters on the probability of rainfall-induced slope failure is conducted by means of a series of seepage and stability analyses of an infinite slope based on random fields. A case study of shallow failure located on sandstone slopes in Japan is used to verify the analysis framework. The results confirm that a probabilistic analysis can be efficiently used to qualify various locations of failure surface caused by spatial variability of soil shear strength for a shallow infinite slope failure due to rainfall.  相似文献   

18.
《Engineering Geology》2001,59(1-2):115-132
Large landslides are common processes during the evolution of volcanoes and individual events can exceed several cubic kilometres in volume. Volcanic slope failures are a significant risk for the neighbouring population due to their huge volumes and great runout distances. Around the Canary archipelago, a total of seventeen deposits of large landslides have been found, and on Tenerife, seven large landslides have affected the subaerial and submarine morphology during the last ∼6 Ma. However, the causes of such mass movements are still poorly understood. This work analyses the events around the Canary Islands and focuses on the ones that occurred on Tenerife in order to obtain new insights into the mechanisms of large volcanic landslides. The study is divided into a first part that includes site investigations examining the general features favouring large-scale failures at volcanoes. The second part describes the laboratory tests used to analyse a residual soil that may be the potential slip surface of the slides on Tenerife. The site investigation revealed that regional tectonics and the climate have a significant influence on the spatial distribution of the landslides. Moreover, morphological and geological features such as deep fluvial canyons, a high coastal cliff and persistent dike intrusion may favour the initiation of slope failure. A typical residual soil sample from the lateral scarp of the La Orotava amphitheatre on Tenerife was studied by carrying out standard laboratory tests. The microstructure was analysed using environmental scanning electron microscopy and a particular bonding was found. This bonding was also detected by the geotechnical tests. Consolidation tests and direct shear tests revealed that the mechanical behaviour of the residual soil changes greatly if the bonding of the soil is broken. The bonded structure generally fails when the effective normal stress surpasses the yield strength of the bonding. In the case of large volcanic landslides with thicknesses up to several hundred meters, the high overburden easily exceeds this yield strength and generates a broken bonding. Therefore, volcanic residual soils, such as the one analysed in this study, are perfect candidates for the potential failure surfaces of large volcanic landslides. Referring to the La Orotava events, we assume that residual soil layers and morphological, geological and climatic features reduced the slope stability to critical conditions, whereas a strong earthquake associated with a caldera collapse episode may have finally triggered the landslide. The results obtained indicate that the residual soils play an important role in affecting the stability of volcano slopes and their destabilising influence significantly favours large-scale sliding. We suggest that the results obtained from this study can be applied to other locations since volcanic residual soils are common in volcanic areas.  相似文献   

19.
In the last 25 years, many of the landslides that have occurred in the greater Durban region have been associated with the colluvial soils overlying the Natal Group, most of which occurred during the very heavy rains of September 1987. Subsequently, a very heavy rainfall event in February 1999 also gave rise to landslides. In fact, prior to 1987 these colluvial soils were considered relatively stable. A critical precipitation coefficient has been developed which included the cumulative precipitation up to a landslide event. In addition, an attempt has been made to establish a threshold value for triggering of landslides for the colluvial soils from a study of pluviometric data. The results indicate that when a rainfall event exceeds 12% of the mean annual rainfall, small-scale landslides are likely to occur. When a rainfall event is greater than 16% of the mean annual rainfall, a moderate number of landslides take place. Major landslides are associated with rainfall events with intensities in excess of 20% of the mean annual precipitation. An example of a landslide which occurred on the Natal Group due to construction operations is provided, as well as an account of those which took place during September 1987. In the latter case, most of the slides took the form of mudflows and were responsible for some of the worst damage which has occurred in the Durban region. The colluvial soils involved were relatively thin and therefore became quickly saturated by the heavy rainfall. In some places the situation was further aggravated by liquefaction of the soils. Received: 15 June 1999 · Accepted: 30 August 1999  相似文献   

20.
我国东南沿海地区台风登陆频繁,伴生暴雨诱发的台风型滑坡造成了严重的经济损失和人员伤亡。已有研究在单峰型、多峰型台风暴雨的斜坡水文响应过程及稳定性分析方面取得了一定成果,但缺乏对台风暴雨型滑坡滞后效应的研究和机理分析。为此,以台风“利奇马”在浙江青田县的登陆为例,基于对台风型滑坡发生数量与降雨量的统计,构建16组不同结构组合的斜坡模型,模拟在台风登陆过程中不同降雨工况条件下斜坡的渗流—稳定性变化。结果表明,台风“利奇马”离陆后青田县内仍有26.4%的滑坡发生,存在一定滞后;不同结构组合斜坡稳定性在离陆后最低,相较于台风登陆前稳定性系数降低了13.82%;在台风登陆暴雨作用下,青田县斜坡稳定性结构影响参数中坡度最为敏感;讨论认为在台风不同登陆阶段的降雨会导致边坡的入渗特征差异,从而形成滞后效应。研究结论对于该区域的台风型滑坡早期识别具有一定指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号