首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
EW-type eclipsing binaries(hereafter called EWs)are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope.Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index(VSX)by 2017 March 13.7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified.Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations.In the paper,those EWs are cataloged and their properties are analyzed.The distributions of orbital period(P),effective temperature(T),gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(RV)are presented for these observed EW-type systems.It is shown that about 80.6% of sample stars have metallicity below zero,indicating that EW-type systems are old stellar populations.This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years.The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems.The correlations between orbital period and effective temperature,gravitational acceleration and metallicity are presented and their scatters are mainly caused by(i)the presence of third bodies and(ii)sometimes wrongly determined periods.It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods.It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities.This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution are mainly driven by angular momentum loss via magnetic braking.  相似文献   

2.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

3.
Using the numerical code (`Scenario Machine') we study of number and physical properties of binary Be stars. Evolutionary tracks leading to a formation of the observational binary systems are presented. We conclude that synchronization must be taken into account when calculating binary Be star evolution and calculate the minimal orbital period for Be/evolved companion binary. The obtained distributions over orbital parameters are in good agreement with the observational lack of short-period Be/X-ray binaries. According to our calculations 70% of all Be stars must have a white dwarf. The white dwarfs in these systems should be hot enough with the surface temperature distribution peaking at 10000–20000 K. Their detection is possible during the period of the lack of Be star envelope by the detection of white dwarf extremely UV and soft X-ray emission. This method of registration appears to be particularly promising for `single' early-type Be stars because in these systems the white dwarfs must have a very high surface temperature. However, the loss of the Be disc-like envelope does not often occur and it is a rather rare event for many Be stars. The best possibility of white dwarf detection is given by the study of helium spectral lines found in emission from several Be stars. The ultraviolet continuum energy of these Be stars is found to be not enough to produce the observed helium emission. Besides, we also discuss the orbital properties of binary Be star systems with other evolved companions such as helium stars and neutron stars and give a possible explanation for the lack of Be/black hole binaries. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In the first paper of this series, we presented EBAS – Eclipsing Binary Automated Solver, a new fully automated algorithm to analyse the light curves of eclipsing binaries, based on the ebop code. Here, we apply the new algorithm to the whole sample of 2580 binaries found in the Optical Gravitational Lensing Experiment (OGLE) Large Magellanic Cloud (LMC) photometric survey and derive the orbital elements for 1931 systems. To obtain the statistical properties of the short-period binaries of the LMC, we construct a well-defined subsample of 938 eclipsing binaries with main-sequence B-type primaries. Correcting for observational selection effects, we derive the distributions of the fractional radii of the two components and their sum, the brightness ratios and the periods of the short-period binaries. Somewhat surprisingly, the results are consistent with a flat distribution in log P between 2 and 10 d. We also estimate the total number of binaries in the LMC with the same characteristics, and not only the eclipsing binaries, to be about 5000. This figure leads us to suggest that  (0.7 ± 0.4)  per cent of the main-sequence B-type stars in the LMC are found in binaries with periods shorter than 10 d. This frequency is substantially smaller than the fraction of binaries found by small Galactic radial-velocity surveys of B stars. On the other hand, the binary frequency found by Hubble Space Telescope ( HST ) photometric searches within the late main-sequence stars of 47 Tuc is only slightly higher and still consistent with the frequency we deduced for the B stars in the LMC.  相似文献   

5.
We present results from high-resolution hydrodynamical simulations that explore the effects of small-scale clustering in star-forming regions. A large ensemble of small- N clusters with five stellar seeds have been modelled and the resulting properties of stars and brown dwarfs statistically derived and compared with observational data.
Close dynamical interactions between the protostars and competitive accretion driven by the cloud collapse are shown to produce a distribution of final masses that is bimodal, with most of the mass residing in the binary components. When convolved with a suitable core mass function, the final distribution of masses resembles the observed initial mass function, in both the stellar and substellar regimes. Binaries and single stars are found to constitute two kinematically distinct populations, with about half of the singles attaining velocities ≥2 km s−1, which might deprive low-mass star-forming regions of their lightest members in a few crossing times. The eccentricity distribution of binaries and multiples is found to follow a distribution similar to that of observed long-period (uncircularized) binaries.
The results obtained support a mechanism in which a significant fraction of brown dwarfs form under similar circumstances as those of normal stars but are ejected from the common envelope of unstable multiple systems before their masses exceed the hydrogen burning limit. We predict that many close binary stars should have wide brown dwarf companions. Brown dwarfs, and, in general, very low-mass stars, would be rare as pure binary companions. The binary fraction should be a decreasing function of primary mass, with low-mass or substellar primaries being scarce. Where such binaries exist, they are expected either to be close enough (semimajor axis ∼10 au) to survive strong interactions with more massive binaries or to be born in very small molecular cloud cores.  相似文献   

6.
CCD photometry of the short-period binary stars KQ Gem and V412 Her is presented, together with some spectroscopic observations of KQ Gem. Although both systems are classified in the General Catalogue of Variable Stars as having light curves of EB/KW type, our data and analyses, involving light-curve synthesis and stellar surface imaging, show that KQ Gem is an EB system that is in marginal contact and has an enhanced bright region around the substellar point on the secondary component, whilst V412 Her is an EW system, a true contact binary with a mass ratio of 0.46 and both stars having the same surface brightness. The properties of the components of the two systems are compared with other marginal-contact and contact binaries, and a plea is repeated for more theoretical work on the mass/energy interchanges in contact binaries.  相似文献   

7.
A significant fraction of planetary nebulae (PNe) and protoplanetary nebulae (PPNe) exhibit aspherical, axisymmetric structures, many of which are highly collimated. The origin of these structures is not entirely understood, however, recent evidence suggests that many observed PNe harbour binary systems, which may play a role in their shaping. In an effort to understand how binaries may produce such asymmetries, we study the effect of low-mass  (<0.3 M)  companions (planets, brown dwarfs and low-mass main-sequence stars) embedded into the envelope of a  3.0-M  star during three epochs of its evolution [red giant branch, asymptotic giant branch (AGB), interpulse AGB]. We find that common envelope evolution can lead to three qualitatively different consequences: (i) direct ejection of envelope material resulting in a predominately equatorial outflow, (ii) spin-up of the envelope resulting in the possibility of powering an explosive dynamo-driven jet and (iii) tidal shredding of the companion into a disc which facilitates a disc-driven jet. We study how these features depend on the secondary's mass and discuss observational consequences.  相似文献   

8.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

9.
New Claret evolutionary model-tracks, constructed for the first time for studying close binary systems (CBS) including tidal evolution constants, are used to determine the age of 112 eclipsing-variable stars in the Svechnikov-Perevozkina catalog by the method of isochrones. There is some interest in comparing the calculated ages with previous estimates obtained for these same close binary systems using evolutionary modeltracks for individual stars taking their mass loss into account. A correlation of the ages of the principal and secondary components is noted, which is most marked for massive close binaries with principal components having masses M1 ≥ 3 M. A rejuvenating effect is found to occur for the systems studied here as calculated on the new tracks; it is most distinct for low-mass close binaries with a total mass M1 + M2 ≤ 3.5 M and is predicted theoretically in terms of magnetic braking. The calculated broadband grid of isochrones, from zero-age main-sequence (ZAMS) to the age of the galaxy, can be used for estimating the ages of close binaries from other catalogs. Ages are given for the 112 eclipsing-variable close binaries with detached components lying within the main sequence. __________ Translated from Astrofizika, Vol. 50, No. 2, pp. 299–312 (May 2007).  相似文献   

10.
On the formation and evolution of black hole binaries   总被引:1,自引:0,他引:1  
We present the results of a systematic study of the formation and evolution of binaries containing black holes and normal-star companions with a wide range of masses. We first reexamine the standard formation scenario for close black hole binaries, where the progenitor system, a binary with at least one massive component, experienced a common-envelope phase and where the spiral-in of the companion in the envelope of the massive star caused the ejection of the envelope. We estimate the formation rates for different companion masses and different assumptions about the common-envelope structure and other model parameters. We find that black hole binaries with intermediate- and high-mass secondaries can form for a wide range of assumptions, while black hole binaries with low-mass secondaries can only form with apparently unrealistic assumptions (in agreement with previous studies).
We then present detailed binary evolution sequences for black hole binaries with secondaries of 2 to 17 M and demonstrate that in these systems the black hole can accrete appreciably even if accretion is Eddington-limited (up to 7 M for an initial black hole mass of 10 M) and that the black holes can be spun up significantly in the process. We discuss the implications of these calculations for well-studied black hole binaries (in particular GRS 1915+105) and ultraluminous X-ray sources of which GRS 1915+105 appears to represent a typical Galactic counterpart. We also present a detailed evolutionary model for Cygnus X-1, a massive black hole binary, which suggests that at present the system is most likely in a wind mass-transfer phase following an earlier Roche-lobe overflow phase. Finally, we discuss how some of the assumptions in the standard model could be relaxed to allow the formation of low-mass, short-period black hole binaries, which appear to be very abundant in nature.  相似文献   

11.
We report the results of a search for variable stars in the open cluster NGC 2141. Ten variable stars are detected, among which nine are new variable stars and they are classified as three short-period W UMa-type eclipsing binaries, two EAtype eclipsing binaries, one EB-type eclipsing binary, one very short-period RS CVntype eclipsing binary, one d-type RR Lyrae variable star, and one unknown type of variable star. The membership and physical properties are discussed, based on their light curves, positions in the color magnitude diagrams, spatial locations and periods.A known EB-type eclipsing binary is also identified as a blue straggler candidate in the cluster. Furthermore, we find that all eclipsing contact binaries have prominent asymmetric eclipses and display the O'Connell effect, which increases with a decrease in orbital periods. This suggests that the O'Connell effect is probably related to the evolution of the orbital period in short period eclipsing binary systems.  相似文献   

12.
We present light curves of four binary subdwarf B stars (sdB), Ton 245, Feige 11, PG 1432+159 and PG 1017−086. We also present new spectroscopic data for PG 1017−086 from which we derive its orbital period,   P =0.073 d  , and the mass function,   f m=0.0010±0.0002 M.  This is the shortest period for an sdB binary measured to date. The values of P and f m for the other sdB binaries have been published elsewhere. We are able to exclude the possibility that the unseen companion stars to Ton 245, Feige 11 and PG 1432+159 are main-sequence stars or subgiant stars from the absence of a sinusoidal signal, which would be caused by the irradiation of such a companion star, i.e. they show no reflection effect. The unseen companion stars in these binaries are likely to be white dwarf stars. In contrast, the reflection effect in PG 1017−086 is clearly seen. The lack of eclipses in this binary combined with other data suggests that the companion is a low-mass M-dwarf or, perhaps, a brown dwarf.  相似文献   

13.
We present the results of our study of the eclipsing binary systems CSS J112237.1+395219,LINEAR 1286561 and LINEAR 2602707 based on new CCD B, V, Rcand Iccomplete light curves. The ultra-short period nature of these stars, as reported by Drake et al., is confirmed and the system's periods are revised. The light curves were modeled using the 2003 version of the Wilson-Devinney code. When necessary, cool spots on the surface of the primary component were introduced to account for asymmetries in the light curves. As a result, we found that CSS J112237.1+395219 is a W UMa type contact binary system belonging to W subclass with a mass ratio of q = 1.61 and a shallow degree of contact of 14.8%where the primary component is hotter than the secondary one by 500 K. LINEAR 1286561 and LINEAR2602707 are detached binary systems with mass ratios q = 3.467 and q = 0.987 respectively. These detached systems are low-mass M-type eclipsing binaries with similar temperatures. The marginal contact,fill-out factor and temperature difference between components of CSS J112237.1+395219 suggest that this system may be at a key evolutionary state predicted by thermal relaxation oscillation(TRO) theory. From the estimated absolute parameters, we conclude that our systems share common properties with other ultrashort period binaries.  相似文献   

14.
Photometric observations are presented in V and I bands of six eclipsing binaries at the lower limit of the orbital periods for W UMa stars. Three of them are newly discovered eclipsing systems. The light curve solutions reveal that all shortperiod targets are contact or overcontact binaries and six new binaries are added to the family of short-period systems with estimated parameters. Four binaries have components that are equal in size and a mass ratio near 1. The phase variability shown by the V-I colors of all targets may be explained by lower temperatures on their back surfaces than those on their side surfaces. Five systems exhibit the O'Connell effect that can be modeled by cool spots on the side surfaces of their primary components.The light curves of V1067 Her in 2011 and 2012 are fitted by diametrically opposite spots. Applying the criteria for subdivision of W UMa stars to our targets leads to ambiguous results.  相似文献   

15.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

16.
We study close encounters involving massive main-sequence stars and the evolution of the exotic products of these encounters as common-envelope systems or possible hypernova progenitors. We show that parabolic encounters between low- and high-mass stars and between two high-mass stars with small periastrons result in mergers on time-scales of a few tens of stellar free-fall times (a few tens of hours). We show that such mergers of unevolved low-mass stars with evolved high-mass stars result in little mass-loss  (∼0.01 M)  and can deliver sufficient fresh hydrogen to the core of the collision product to allow the collision product to burn for several million years. We find that grazing encounters enter a common-envelope phase which may expel the envelope of the merger product. The deposition of energy in the envelopes of our merger products causes them to swell by factors of ∼100. If these remnants exist in very densely populated environments  ( n ≳ 107 pc−3)  , they will suffer further collisions which may drive off their envelopes, leaving behind hard binaries. We show that the products of collisions have cores rotating sufficiently rapidly to make them candidate hypernova/gamma-ray burst progenitors and that ∼0.1 per cent of massive stars may suffer collisions, sufficient for such events to contribute significantly to the observed rates of hypernovae and gamma-ray bursts.  相似文献   

17.
We examine the proposal that the subset of neutron-star and black-hole X-ray binaries that form with Ap or Bp star companions will experience systemic angular-momentum losses due to magnetic braking, not otherwise operative with intermediate-mass companion stars. We suggest that for donor stars possessing the anomalously high magnetic fields associated with Ap and Bp stars, a magnetically coupled, irradiation-driven stellar wind can lead to substantial systemic loss of angular momentum. Hence, these systems, which would otherwise not be expected to experience 'magnetic braking', evolve to shorter orbital periods during mass transfer. In this paper, we detail how such a magnetic braking scenario operates. We apply it to a specific astrophysics problem involving the formation of compact black-hole binaries with low-mass donor stars. At present, it is not understood how these systems form, given that low-mass companion stars are not likely to provide sufficient gravitational potential to unbind the envelope of the massive progenitor of the black hole during a prior 'common-envelope' phase. On the other hand, intermediate-mass companions, such as Ap and Bp stars, could more readily eject the common envelope. However, in the absence of magnetic braking, such systems tend to evolve to long orbital periods. We show that, with the proposed magnetic braking properties afforded by Ap and Bp companions, such a scenario can lead to the formation of compact black-hole binaries with orbital periods, donor masses, lifetimes and production rates that are in accord with the observations. In spite of these successes, our models reveal a significant discrepancy between the calculated effective temperatures and the observed spectral types of the donor stars. Finally, we show that this temperature discrepancy would still exist for other scenarios invoking initially intermediate-mass donor stars, and this presents a substantial unresolved mystery.  相似文献   

18.
We present the results of our numerical simulations of the cyclic brightness modulation in young binary systems with eccentric orbits and low-mass secondary components. We suggest that the binary components accrete matter from the remnants of the protostellar cloud, with the main accretor (according to current models) being the low-mass component. The brightness variations of the primary are attributable to the periodic extinction variations on the line of sight caused by the disk wind from the secondary and by the common envelope produced by this wind. The distribution of matter in the envelope was calculated in the ballistic approximation. When calculating the optical effects produced by the dust component of the disk wind, we adopted the dust-to-gas mass ratio of 1:100 characteristic of the interstellar medium and the optical parameters of the circumstellar dust typical of young stars. Our calculations show that the theoretical light curves for binaries with elliptical orbits exhibit a wider variety of shapes than those for binaries with circular orbits. In this case, the parameters of the photometric minima (their depth, duration, and shape of the light curve) depend not only on the disk-wind parameters and the orbital inclination of the binary to the line of sight, but also on the longitude of the periastron. We investigate the modulation of the scattered radiation from the common envelope with orbital phase in the single-scattering approximation. The modulation amplitude is shown to be at a maximum when the system is seen edge-on and to be also nonzero in binaries seen pole-on. We discuss possible applications of the theory to young stellar objects. In particular, several model light curves have been found to be similar to those of candidate FU Orionis stars (FUORs).  相似文献   

19.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

20.
A nearly complete sample of 24 Magellanic Cloud WC/WO subclass Wolf–Rayet stars is studied spectroscopically and photometrically to determine its binary frequency. Theory predicts the Roche lobe overflow produced Wolf–Rayet binary frequency to be 52±14 per cent in the Large Magellanic Cloud and 100 per cent in the Small Magellanic Cloud, not counting non-Roche lobe overflow Wolf–Rayet binaries. Lower ambient metallicity ( Z ) leads to lower opacity, preventing all but the most massive (hence luminous) single stars from reaching the Wolf–Rayet stage. However, theory predicts that Roche lobe overflow even in binaries of modest mass will lead to Wolf–Rayet stars in binaries with periods below approximately 200 d, for initial periods below approximately 1000 d, independent of Z . By examining their absolute continuum magnitudes, radial velocity variations, emission-line equivalent widths and full widths at half-maximum, a WC/WO binary frequency of only 13 per cent, significantly lower than the prediction, is found in the Large Magellanic Cloud. In the unlikely event that all of the cases with a less certain binary status actually turn out to be binary, current theory and observation would agree. (The Small Magellanic Cloud contains only one WC/WO star, which happens to be a binary.) The three WC+O binaries in the Large Magellanic Cloud all have periods well below 1000 d. The large majority of WC/WO stars in such environments apparently can form without the aid of a binary companion. Current evolutionary scenarios appear to have difficulty explaining either the relatively large number of Wolf–Rayet stars in the Magellanic Clouds, or the formation of Wolf–Rayet stars in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号