首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
The Large Optical/infrared Telescope(LOT) is a ground-based 12 m diameter optical/infrared telescope which is proposed to be built in the western part of China in the next decade.Based on satellite remote sensing data,along with geographical,logistical and political considerations,three candidate sites were chosen for ground-based astronomical performance monitoring.These sites include:Ali in Tibet,Daocheng in Sichuan and Muztagh-ata in Xinjiang.Up until now,all three sites have continuously collected data for two years.In this paper,we will introduce this site testing campaign,and present its monitoring results obtained during the period between March 2017 and March 2019.  相似文献   

2.
Site-testing is crucial for achieving the goal of scientific research and analysis of meteorological and optical observing conditions,one of the associated basic tasks.As one of three potential sites to host the 12-meter Large Optical/infrared Telescope(LOT),the Muztagh-ata site,which is located on the Pamir Plateau in Xinjiang,in west China,began its site-testing task in the spring of 2017.In this paper,we firstly start with an introduction to the site and then present a statistical analysis of the ground-level meteorological properties such as air temperature,barometric pressure,relative humidity,and wind speed and direction,recorded by an automatic weather station with standard meteorological sensors for a two-year duration.We also show the monitoring results of sky brightness during this period.  相似文献   

3.
The Daocheng site is one of the three candidate sites for the Large Optical/infrared Telescope(LOT) of China.It was discovered by Yunnan Observatories during the survey of potential sites for the next-generation large-aperture solar telescopes of China.This paper describes the overview of the site,the observation platform and the monitor instrument.In addition,simple statistical results are presented(from November,2016 up to December,2017).Detailed data results can refer to the overview of LOT site testing and data analysis articles,which were published during the same period.  相似文献   

4.
AKARI, formerly known as ASTRO-F, is a satellite mission dedicated to infrared astronomy for the first time in Japan. It has a 685-mm aperture telescope with two focal-plane instruments cooled by liquid helium (LHe) and mechanical coolers on board for observations in the 2–180 μm infrared spectral range. AKARI was launched on 2006 February 21 (UT) into a sun-synchronous polar orbit and started observations in May, 2006. It carried 179 liter LHe that lasted for 550 days and observations with LHe were carried out for more than 15 months. During the LHe holding period, AKARI made all-sky survey observations with six bands from 9 to 160 μm, which surpass the IRAS all-sky survey data in the sensitivity, spatial resolution, and spectral coverage. Together with the all-sky observation, AKARI also made pointing observations for about 10 min at a given position of the sky to execute deep imaging and spectroscopy from near- to far-infrared. Both focal-plane instruments work successfully on orbit and more than 90% of the sky was observed in the all-sky survey. After LHe exhaustion, near-infrared observations are planned to continue. This paper reports the in-orbit performance of AKARI and its early observational results so far obtained.  相似文献   

5.
In this article,we present a detailed analysis of the statistical properties of seeing for the Muztaghata site which is a candidate site for hosting the future Chinese Large Optical/infrared Telescope(LOT)project.The measurements were obtained with differential image motion monitors(DIMMs) from April2017 to November 2018 at different heights during different periods.The median seeings at 11 m and6 m are very close but significantly different from that on the ground.We mainly analyzed the seeing at11 m monthly and hourly,having found that the best season for observing was from late autumn to early winter and seeing tended to improve during the night only in autumn.The analysis of the dependence on temperature inversion,wind speed and direction also was made and the best meteorological conditions for seeing are given.  相似文献   

6.
In this paper, co-phasing errors of a segmented primary mirror tiled by hexagonal segments are successfully calculated for the 12-meter Large aperture Optical/infrared Telescope(LOT). Co-phasing errors including out-of-plane errors are simulated separately and comprehensively based on several software simulation platforms. PAOLA simulation results show that the Strehl Ratio(SR) of LOT is larger than 0.8 when the RMS value of tip-tilt obeying a normal distribution is less than 0.018 arcsec, and the SR of LOT is larger than 0.8 when the RMS value of piston obeying a normal distribution is less than 40 nm. Besides,simulation results of Zemax show that the SR of LOT is larger than 0.8 when the RMS value of tip-tilt obeying a normal distribution is less than 0.02 arcsec, and the SR of LOT is larger than 0.8 when the RMS value of piston obeying a normal distribution is less than 40 nm. These simulation results successfully lay a solid foundation for LOT(especially the segmented primary mirror with active optics).  相似文献   

7.
Introduced to astronomy less than a decade ago, infrared detector arrays have radically and forever changed astronomer's observational techniques, instruments, and telescope designs. This paper first examines the array technology development that caused this change, with emphasis on the 1- to 5-m band. Technology trends and projections for further development within the infrared industry are analyzed to assist astronomers in planning future instruments. This technology development is predicted to result in arrays with lower noise, greater well depth, response to a wider band of wavelengths, and, above all, much larger formats than arrays currently in use.  相似文献   

8.
Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data in various formats including Virtual Observatory standards.  相似文献   

9.
We describe here a simple irradiance photometer built at Astrophysical and Geophysical Laboratory (LAG) for the integrated photometry of sun light at Oukaimeden, a 2700m summit in the Morrocan High Atlas. The solar irradiance measurement is performed simultaneously at three wavelengths to sample different levels of the sky transparency. The total of 1182 days in the data base shows that the number of clear hours is about 3086 per year which represents 65.32% of clear sky. The extinction coefficient is computed to evaluate the quality of the sky transparency at the site. We find that there is a seasonal effect for the sky transparency, and the monthly average of the extinction coefficient has a minimum value of about 0.05 in winter (oct-nov-dec) and a maximum of about 0.15 in summer (jun-jul) at 700 nm.  相似文献   

10.
埃文斯目视日晕光度计(Evans Visual Sky Photometer,EVSP)是应用于日冕仪选址的重要仪器,从20世纪40年代一直使用至今,它为现代日晕光度计的定标提供了参考标准。通过使用云南天文台现存的一架EVSP研究了它的工作原理,并重点介绍了所利用的简易定标方法。给出了国际现有的多台EVSP日晕亮度定标曲线。由于EVSP内部光学元件反射率和透过率,以及中性渐变光楔的光学密度等存在未知的时间缓变特点,因此利用这种新定标手段可以高效经济地获得各自的定标曲线。  相似文献   

11.
The Large Optical/infrared Telescope of China is a 12 meter diameter ground-based optical/infrared telescope which is proposed to be constructed in the western part of China in favor of its arid climate,and clear,dark nights.A site testing campaign was initiated between November 2016 and March2019 in order to investigate long term astronomical weather conditions in the western part of China,specifically,at three sites:Ali in Tibet,Daocheng in Sichuan and Muztagh-ata in Xinjiang.This is the first attempt to evaluate long term performances of three candidate sites with uniformly calibrated instruments and data collecting/processing methods for a two-year span in China.In this special issue,we present nine papers that describe the whole site testing campaign,including preparation,data collecting/processing methods,instrument set up at three candidate sites as well as detailed statistics for the measurement results from March 2017 to March 2019.  相似文献   

12.
Sierra Negra, one of the highest peaks in central Mexico, is the site of the Large Millimeter Telescope. We describe the first results of a comprehensive analysis of the weather data measured in situ from 2000 October to 2008 February to be used as a reference for future activity in the site. We compare the data from two different stations at the summit considering the accuracy of both instruments. We analysed the diurnal, seasonal and annual cycles for all the parameters. The thermal stability is remarkably good, crucial for a good performance of the telescopes. From the solar radiation data, we developed a new method to estimate the fraction of time when the sky is clear of clouds. We show that our measurements are consistent with a warm standard atmosphere model. The conditions at the site are benign and stable given its altitude, showing that Sierra Negra is an extremely good site for millimeter and high-energy observations.  相似文献   

13.
The Gemini Telescopes are being built to exploit the splendid infrared sites of Mauna Kea in Hawaii and Cerro Pachon in Chile. Both telescopes are being designed to deliver 0.1 arcsecond images at 2.2 m to the focal plane. This image size includes all tracking and enclosure effects. To exploit the superb infrared characteristics of the sites and telescopes we will require a new generation of IR instruments which will challenge both instrument designers and infrared array technologies.  相似文献   

14.
For the majority of optical observing programmes, the sky brightness provides the fundamental limit to signal detection such that the scientific feasibility is largely dictated by the phase of the Moon. Since most observatories do not have the resources to build expensive high-resolution or infrared instruments, they are increasingly at a loss as to how to exploit bright time. We show that, with due consideration of the field and Moon position, it is possible to undertake 'dark-time' observing programmes under 'bright-time' conditions. Our recommendations are particularly appropriate to all-sky survey programmes.
In certain instances, there are gains in observing efficiency with the use of a polarizer, which can significantly reduce the moonlight (or twilight) sky-background flux relative to an extraterrestrial flux. These gains are possible in background-limited cases because the sky background can be highly polarized, caused by scattering, around 90° away from the Moon (or Sun). To take advantage of this, only minor modifications to existing instruments are needed.  相似文献   

15.
The absolute brightness of the zenith sky was measured using a simple calibrated spectrometer during the annular solar eclipse event on May 21, 2012 in Fujioka City, Japan (36.2924°N, 139.0823°E). The sensitivity of the spectrometer was calibrated as a function of wavelength between 400 and 700 nm with an integral sphere. The brightness of the sky decreased to 6 % of its usual condition at the maximum magnitude of the annular eclipse of 0.95 for all wavelengths. The curve describing the variation of sky brightness accords well with the total luminosity of the solar disk estimated by a simple model that accounts for the limb darkening effect. This study provides zenith sky radiance as a function of wavelength and solar elevation angle, which is useful for the investigation of new optical instruments for atmospheric studies.  相似文献   

16.
The Solar Radiation and Climate Experiment, SORCE, is a satellite carrying four scientific instruments that measure the total solar irradiance and the spectral irradiance from the ultraviolet to the infrared. The instruments were all developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder. The spacecraft carrying and accommodating the instruments was developed by Orbital Sciences Corporation in Dulles, Virginia. It is three-axis stabilized with a control system to point the instruments at the Sun, as well as the stars for calibration. SORCE was successfully launched from the Kennedy Space Center in Florida on 25 January 2003 aboard a Pegasus XL rocket. The anticipated lifetime is 5 years, with a goal of 6 years. SORCE is operated from the Mission Operations Center at LASP where all data are collected, processed, and distributed. This paper describes the SORCE spacecraft, integration and test, mission operations, and ground data system.  相似文献   

17.
AKARI, formerly known as ASTRO-F, is the second Japanese space mission to perform infrared astronomical observations. AKARI was launched on 21 February 2006 (UT) and brought into a sun-synchronous polar orbit at an altitude of 700 km by a JAXA M-V rocket. AKARI has a telescope with a primary-mirror aperture size of 685 mm together with two focal-plane instruments on board: the Infrared Camera (IRC), which covers the spectral range 2–26 μm and the Far-Infrared Surveyor (FIS), which operates in the range 50–180 μm. The telescope mirrors are made of sandwich-type silicon carbide, specially developed for AKARI. The focal-plane instruments and the telescope are cooled by a unique cryogenic system that kept the telescope at 6K for 550 days with 180 l super-fluid liquid Helium (LHe) with the help of mechanical coolers on board. Despite the small telescope size, the cold environment and the state-of-the-art detectors enable very sensitive observations at infrared wavelengths. To take advantage of the characteristics of the sun-synchronous polar orbit, AKARI performed an all-sky survey during the LHe holding period in four far-infrared bands with FIS and two mid-infrared bands with IRC, which surpasses the IRAS survey made in 1983 in sensitivity, spatial resolution, and spectral coverage. AKARI also made over 5,000 pointing observations at given targets in the sky for approximately 10 min each, for deep imaging and spectroscopy from 2 to 180 μm during the LHe holding period. The LHe ran out on 26 August 2007, since which date the telescope and instrument are still kept around 40K by the mechanical cooler on board, and near-infrared imaging and spectroscopic observations with IRC are now being continued in pointing mode.  相似文献   

18.
Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now, it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall “big picture” astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.  相似文献   

19.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

20.
2MASS的科学意义和成果概览   总被引:1,自引:0,他引:1  
2MASS(Two Micron All Sky Survey)以相当高的内部一致性和精确度在近红外波段对整个天空进行了巡天观测,并通过数据处理把原始数据转变为对天文学有用的图像、星等和位置的列表。较详细介绍了2MASS的科学意义、巡天成果、数据特征以及利用2MASS观测数据所开展的部分工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号